Scintilla icon Scintilla

Scintilla Documentation

Last edited 29/June/2013 NH

There is an overview of the internal design of Scintilla.
Some notes on using Scintilla.
How to use the Scintilla Edit Control on Windows.
A simple sample using Scintilla from C++ on Windows.
A simple sample using Scintilla from Visual Basic.
Bait is a tiny sample using Scintilla on GTK+.
A detailed description of how to write a lexer, including a discussion of folding.
How to implement a lexer in the container.
How to implement folding.
The coding style used in Scintilla and SciTE is worth following if you want to contribute code to Scintilla but is not compulsory.

Introduction

The Windows version of Scintilla is a Windows Control. As such, its primary programming interface is through Windows messages. Early versions of Scintilla emulated much of the API defined by the standard Windows Edit and RichEdit controls but those APIs are now deprecated in favour of Scintilla's own, more consistent API. In addition to messages performing the actions of a normal Edit control, Scintilla allows control of syntax styling, folding, markers, autocompletion and call tips.

The GTK+ version also uses messages in a similar way to the Windows version. This is different to normal GTK+ practice but made it easier to implement rapidly.

Scintilla does not properly support right-to-left languages like Arabic and Hebrew. While text in these languages may appear correct, it is not possible to interact with this text as is normal with other editing components.

This documentation describes the individual messages and notifications used by Scintilla. It does not describe how to link them together to form a useful editor. For now, the best way to work out how to develop using Scintilla is to see how SciTE uses it. SciTE exercises most of Scintilla's facilities.

In the descriptions that follow, the messages are described as function calls with zero, one or two arguments. These two arguments are the standard wParam and lParam familiar to Windows programmers. These parameters are integers that are large enough to hold pointers, and the return value is also an integer large enough to contain a pointer. Although the commands only use the arguments described, because all messages have two arguments whether Scintilla uses them or not, it is strongly recommended that any unused arguments are set to 0. This allows future enhancement of messages without the risk of breaking existing code. Common argument types are:

bool Arguments expect the values 0 for false and 1 for true.
int Arguments are 32-bit signed integers.
const char * Arguments point at text that is being passed to Scintilla but not modified. The text may be zero terminated or another argument may specify the character count, the description will make this clear.
char * Arguments point at text buffers that Scintilla will fill with text. In some cases, another argument will tell Scintilla the buffer size. In others, you must make sure that the buffer is big enough to hold the requested text. If a NULL pointer (0) is passed then, for SCI_* calls, the length that should be allocated is returned.
colour Colours are set using the RGB format (Red, Green, Blue). The intensity of each colour is set in the range 0 to 255. If you have three such intensities, they are combined as: red | (green << 8) | (blue << 16). If you set all intensities to 255, the colour is white. If you set all intensities to 0, the colour is black. When you set a colour, you are making a request. What you will get depends on the capabilities of the system and the current screen mode.
alpha Translucency is set using an alpha value. Alpha ranges from 0 (SC_ALPHA_TRANSPARENT) which is completely transparent to 255 (SC_ALPHA_OPAQUE) which is opaque. The value 256 (SC_ALPHA_NOALPHA) is opaque and uses code that is not alpha-aware and may be faster. Not all platforms support translucency and only some Scintilla features implement translucency. The default alpha value for most features is SC_ALPHA_NOALPHA.
<unused> This is an unused argument. Setting it to 0 will ensure compatibility with future enhancements.

Contents

o Text retrieval and modification o Searching and replacing o Overtype
o Cut, copy and paste o Error handling o Undo and Redo
o Selection and information o Multiple Selection and Virtual Space o Scrolling and automatic scrolling
o White space o Cursor o Mouse capture
o Line endings o Styling o Style definition
o Caret, selection, and hotspot styles o Margins o Annotations
o Other settings o Brace highlighting o Tabs and Indentation Guides
o Markers o Indicators o Autocompletion
o User lists o Call tips o Keyboard commands
o Key bindings o Popup edit menu o Macro recording
o Printing o Direct access o Multiple views
o Background loading and saving o Folding o Line wrapping
o Zooming o Long lines o Lexer
o Lexer objects o Notifications o Images
o GTK+ o Provisional messages o Deprecated messages
o Edit messages never supported by Scintilla o Building Scintilla

Messages with names of the form SCI_SETxxxxx often have a companion SCI_GETxxxxx. To save tedious repetition, if the SCI_GETxxxxx message returns the value set by the SCI_SETxxxxx message, the SET routine is described and the GET routine is left to your imagination.

Text retrieval and modification

Each byte in a Scintilla document is followed by an associated byte of styling information. The combination of a character byte and a style byte is called a cell. Style bytes are interpreted an index into an array of styles. Style bytes may be split into an index and a set of indicator bits but this use is discouraged and indicators should now use SCI_INDICATORFILLRANGE and related calls. The default split is with the index in the low 5 bits and 3 high bits as indicators. This allows 32 fundamental styles, which is enough for most languages, and three independent indicators so that, for example, syntax errors, deprecated names and bad indentation could all be displayed at once. The number of bits used for styles can be altered with SCI_SETSTYLEBITS up to a maximum of 8 bits. The remaining bits can be used for indicators.

In this document, 'character' normally refers to a byte even when multi-byte characters are used. Lengths measure the numbers of bytes, not the amount of characters in those bytes.

Positions within the Scintilla document refer to a character or the gap before that character. The first character in a document is 0, the second 1 and so on. If a document contains nLen characters, the last character is numbered nLen-1. The caret exists between character positions and can be located from before the first character (0) to after the last character (nLen).

There are places where the caret can not go where two character bytes make up one character. This occurs when a DBCS character from a language like Japanese is included in the document or when line ends are marked with the CP/M standard of a carriage return followed by a line feed. The INVALID_POSITION constant (-1) represents an invalid position within the document.

All lines of text in Scintilla are the same height, and this height is calculated from the largest font in any current style. This restriction is for performance; if lines differed in height then calculations involving positioning of text would require the text to be styled first.

SCI_GETTEXT(int length, char *text)
SCI_SETTEXT(<unused>, const char *text)
SCI_SETSAVEPOINT
SCI_GETLINE(int line, char *text)
SCI_REPLACESEL(<unused>, const char *text)
SCI_SETREADONLY(bool readOnly)
SCI_GETREADONLY
SCI_GETTEXTRANGE(<unused>, Sci_TextRange *tr)
SCI_ALLOCATE(int bytes, <unused>)
SCI_ADDTEXT(int length, const char *s)
SCI_ADDSTYLEDTEXT(int length, cell *s)
SCI_APPENDTEXT(int length, const char *s)
SCI_INSERTTEXT(int pos, const char *text)
SCI_CLEARALL
SCI_DELETERANGE(int pos, int deleteLength)
SCI_CLEARDOCUMENTSTYLE
SCI_GETCHARAT(int position)
SCI_GETSTYLEAT(int position)
SCI_GETSTYLEDTEXT(<unused>, Sci_TextRange *tr)
SCI_SETSTYLEBITS(int bits)
SCI_GETSTYLEBITS
SCI_RELEASEALLEXTENDEDSTYLES
SCI_ALLOCATEEXTENDEDSTYLES(int numberStyles)
SCI_TARGETASUTF8(<unused>, char *s)
SCI_ENCODEDFROMUTF8(const char *utf8, char *encoded)
SCI_SETLENGTHFORENCODE(int bytes)

SCI_GETTEXT(int length, char *text)
This returns length-1 characters of text from the start of the document plus one terminating 0 character. To collect all the text in a document, use SCI_GETLENGTH to get the number of characters in the document (nLen), allocate a character buffer of length nLen+1 bytes, then call SCI_GETTEXT(nLen+1, char *text). If the text argument is 0 then the length that should be allocated to store the entire document is returned. If you then save the text, you should use SCI_SETSAVEPOINT to mark the text as unmodified.

See also: SCI_GETSELTEXT, SCI_GETCURLINE, SCI_GETLINE, SCI_GETSTYLEDTEXT, SCI_GETTEXTRANGE

SCI_SETTEXT(<unused>, const char *text)
This replaces all the text in the document with the zero terminated text string you pass in.

SCI_SETSAVEPOINT
This message tells Scintilla that the current state of the document is unmodified. This is usually done when the file is saved or loaded, hence the name "save point". As Scintilla performs undo and redo operations, it notifies the container that it has entered or left the save point with SCN_SAVEPOINTREACHED and SCN_SAVEPOINTLEFT notification messages, allowing the container to know if the file should be considered dirty or not.

See also: SCI_EMPTYUNDOBUFFER, SCI_GETMODIFY

SCI_GETLINE(int line, char *text)
This fills the buffer defined by text with the contents of the nominated line (lines start at 0). The buffer is not terminated by a 0 character. It is up to you to make sure that the buffer is long enough for the text, use SCI_LINELENGTH(int line). The returned value is the number of characters copied to the buffer. The returned text includes any end of line characters. If you ask for a line number outside the range of lines in the document, 0 characters are copied. If the text argument is 0 then the length that should be allocated to store the entire line is returned.

See also: SCI_GETCURLINE, SCI_GETSELTEXT, SCI_GETTEXTRANGE, SCI_GETSTYLEDTEXT, SCI_GETTEXT

SCI_REPLACESEL(<unused>, const char *text)
The currently selected text between the anchor and the current position is replaced by the 0 terminated text string. If the anchor and current position are the same, the text is inserted at the caret position. The caret is positioned after the inserted text and the caret is scrolled into view.

SCI_SETREADONLY(bool readOnly)
SCI_GETREADONLY
These messages set and get the read-only flag for the document. If you mark a document as read only, attempts to modify the text cause the SCN_MODIFYATTEMPTRO notification.

SCI_GETTEXTRANGE(<unused>, Sci_TextRange *tr)
This collects the text between the positions cpMin and cpMax and copies it to lpstrText (see struct Sci_TextRange in Scintilla.h). If cpMax is -1, text is returned to the end of the document. The text is 0 terminated, so you must supply a buffer that is at least 1 character longer than the number of characters you wish to read. The return value is the length of the returned text not including the terminating 0.

See also: SCI_GETSELTEXT, SCI_GETLINE, SCI_GETCURLINE, SCI_GETSTYLEDTEXT, SCI_GETTEXT

SCI_GETSTYLEDTEXT(<unused>, Sci_TextRange *tr)
This collects styled text into a buffer using two bytes for each cell, with the character at the lower address of each pair and the style byte at the upper address. Characters between the positions cpMin and cpMax are copied to lpstrText (see struct Sci_TextRange in Scintilla.h). Two 0 bytes are added to the end of the text, so the buffer that lpstrText points at must be at least 2*(cpMax-cpMin)+2 bytes long. No check is made for sensible values of cpMin or cpMax. Positions outside the document return character codes and style bytes of 0.

See also: SCI_GETSELTEXT, SCI_GETLINE, SCI_GETCURLINE, SCI_GETTEXTRANGE, SCI_GETTEXT

SCI_ALLOCATE(int bytes, <unused>)
Allocate a document buffer large enough to store a given number of bytes. The document will not be made smaller than its current contents.

SCI_ADDTEXT(int length, const char *s)
This inserts the first length characters from the string s at the current position. This will include any 0's in the string that you might have expected to stop the insert operation. The current position is set at the end of the inserted text, but it is not scrolled into view.

SCI_ADDSTYLEDTEXT(int length, cell *s)
This behaves just like SCI_ADDTEXT, but inserts styled text.

SCI_APPENDTEXT(int length, const char *s)
This adds the first length characters from the string s to the end of the document. This will include any 0's in the string that you might have expected to stop the operation. The current selection is not changed and the new text is not scrolled into view.

SCI_INSERTTEXT(int pos, const char *text)
This inserts the zero terminated text string at position pos or at the current position if pos is -1. If the current position is after the insertion point then it is moved along with its surrounding text but no scrolling is performed.

SCI_CLEARALL
Unless the document is read-only, this deletes all the text.

SCI_DELETERANGE(int pos, int deleteLength)
Deletes a range of text in the document.

SCI_CLEARDOCUMENTSTYLE
When wanting to completely restyle the document, for example after choosing a lexer, the SCI_CLEARDOCUMENTSTYLE can be used to clear all styling information and reset the folding state.

SCI_GETCHARAT(int pos)
This returns the character at pos in the document or 0 if pos is negative or past the end of the document.

SCI_GETSTYLEAT(int pos)
This returns the style at pos in the document, or 0 if pos is negative or past the end of the document.

SCI_SETSTYLEBITS(int bits)
SCI_GETSTYLEBITS
This pair of routines sets and reads back the number of bits in each cell to use for styling, to a maximum of 8 style bits. The remaining bits can be used as indicators. The standard setting is SCI_SETSTYLEBITS(5). The number of styling bits needed by the current lexer can be found with SCI_GETSTYLEBITSNEEDED.

SCI_RELEASEALLEXTENDEDSTYLES
SCI_ALLOCATEEXTENDEDSTYLES(int numberStyles)
Extended styles are used for features like textual margins and annotations as well as internally by Scintilla. They are outside the range 0..255 used for the styles bytes associated with document bytes. These functions manage the use of extended styles to ensures that components cooperate in defining styles. SCI_RELEASEALLEXTENDEDSTYLES releases any extended styles allocated by the container. SCI_ALLOCATEEXTENDEDSTYLES allocates a range of style numbers after the byte style values and returns the number of the first allocated style. Ranges for margin and annotation styles should be allocated before calling SCI_MARGINSETSTYLEOFFSET or SCI_ANNOTATIONSETSTYLEOFFSET.

Sci_TextRange and Sci_CharacterRange
These structures are defined to be exactly the same shape as the Win32 TEXTRANGE and CHARRANGE, so that older code that treats Scintilla as a RichEdit will work.

struct Sci_CharacterRange {
    long cpMin;
    long cpMax;
};

struct Sci_TextRange {
    struct Sci_CharacterRange chrg;
    char *lpstrText;
};

GTK+-specific: Access to encoded text

SCI_TARGETASUTF8(<unused>, char *s)
This method retrieves the value of the target encoded as UTF-8 which is the default encoding of GTK+ so is useful for retrieving text for use in other parts of the user interface, such as find and replace dialogs. The length of the encoded text in bytes is returned.

SCI_ENCODEDFROMUTF8(const char *utf8, char *encoded)
SCI_SETLENGTHFORENCODE(int bytes)
SCI_ENCODEDFROMUTF8 converts a UTF-8 string into the document's encoding which is useful for taking the results of a find dialog, for example, and receiving a string of bytes that can be searched for in the document. Since the text can contain nul bytes, the SCI_SETLENGTHFORENCODE method can be used to set the length that will be converted. If set to -1, the length is determined by finding a nul byte. The length of the converted string is returned.

Searching

There are methods to search for text and for regular expressions. The regular expression support is limited and should only be used for simple cases and initial development. A different regular expression library can be integrated into Scintilla or can be called from the container using direct access to the buffer contents through SCI_GETCHARACTERPOINTER.

SCI_FINDTEXT(int flags, Sci_TextToFind *ttf)
SCI_SEARCHANCHOR
SCI_SEARCHNEXT(int searchFlags, const char *text)
SCI_SEARCHPREV(int searchFlags, const char *text)
Search and replace using the target

searchFlags
Several of the search routines use flag options, which include a simple regular expression search. Combine the flag options by adding them:

SCFIND_MATCHCASE A match only occurs with text that matches the case of the search string.
SCFIND_WHOLEWORD A match only occurs if the characters before and after are not word characters.
SCFIND_WORDSTART A match only occurs if the character before is not a word character.
SCFIND_REGEXP The search string should be interpreted as a regular expression.
SCFIND_POSIX Treat regular expression in a more POSIX compatible manner by interpreting bare ( and ) for tagged sections rather than \( and \).

You can search backwards to find the previous occurrence of a search string by setting the end of the search range before the start.

In a regular expression, special characters interpreted are:

. Matches any character
\( This marks the start of a region for tagging a match.
\) This marks the end of a tagged region.
\n Where n is 1 through 9 refers to the first through ninth tagged region when replacing. For example, if the search string was Fred\([1-9]\)XXX and the replace string was Sam\1YYY, when applied to Fred2XXX this would generate Sam2YYY. \0 refers to all of the matching text.
\< This matches the start of a word using Scintilla's definitions of words.
\> This matches the end of a word using Scintilla's definition of words.
\x This allows you to use a character x that would otherwise have a special meaning. For example, \[ would be interpreted as [ and not as the start of a character set.
[...] This indicates a set of characters, for example, [abc] means any of the characters a, b or c. You can also use ranges, for example [a-z] for any lower case character.
[^...] The complement of the characters in the set. For example, [^A-Za-z] means any character except an alphabetic character.
^ This matches the start of a line (unless used inside a set, see above).
$ This matches the end of a line.
* This matches 0 or more times. For example, Sa*m matches Sm, Sam, Saam, Saaam and so on.
+ This matches 1 or more times. For example, Sa+m matches Sam, Saam, Saaam and so on.

Regular expressions will only match ranges within a single line, never matching over multiple lines.

SCI_FINDTEXT(int searchFlags, Sci_TextToFind *ttf)
This message searches for text in the document. It does not use or move the current selection. The searchFlags argument controls the search type, which includes regular expression searches.

The Sci_TextToFind structure is defined in Scintilla.h; set chrg.cpMin and chrg.cpMax with the range of positions in the document to search. You can search backwards by setting chrg.cpMax less than chrg.cpMin. Set the lpstrText member of Sci_TextToFind to point at a zero terminated text string holding the search pattern. If your language makes the use of Sci_TextToFind difficult, you should consider using SCI_SEARCHINTARGET instead.

The return value is -1 if the search fails or the position of the start of the found text if it succeeds. The chrgText.cpMin and chrgText.cpMax members of Sci_TextToFind are filled in with the start and end positions of the found text.

See also: SCI_SEARCHINTARGET

Sci_TextToFind
This structure is defined to have exactly the same shape as the Win32 structure FINDTEXTEX for old code that treated Scintilla as a RichEdit control.

struct Sci_TextToFind {
    struct Sci_CharacterRange chrg;     // range to search
    char *lpstrText;                // the search pattern (zero terminated)
    struct Sci_CharacterRange chrgText; // returned as position of matching text
};

SCI_SEARCHANCHOR
SCI_SEARCHNEXT(int searchFlags, const char *text)
SCI_SEARCHPREV(int searchFlags, const char *text)
These messages provide relocatable search support. This allows multiple incremental interactive searches to be macro recorded while still setting the selection to found text so the find/select operation is self-contained. These three messages send SCN_MACRORECORD notifications if macro recording is enabled.

SCI_SEARCHANCHOR sets the search start point used by SCI_SEARCHNEXT and SCI_SEARCHPREV to the start of the current selection, that is, the end of the selection that is nearer to the start of the document. You should always call this before calling either of SCI_SEARCHNEXT or SCI_SEARCHPREV.

SCI_SEARCHNEXT and SCI_SEARCHPREV search for the next and previous occurrence of the zero terminated search string pointed at by text. The search is modified by the searchFlags.

The return value is -1 if nothing is found, otherwise the return value is the start position of the matching text. The selection is updated to show the matched text, but is not scrolled into view.

See also: SCI_SEARCHINTARGET, SCI_FINDTEXT

Search and replace using the target

Using SCI_REPLACESEL, modifications cause scrolling and other visible changes, which may take some time and cause unwanted display updates. If performing many changes, such as a replace all command, the target can be used instead. First, set the target, ie. the range to be replaced. Then call SCI_REPLACETARGET or SCI_REPLACETARGETRE.

Searching can be performed within the target range with SCI_SEARCHINTARGET, which uses a counted string to allow searching for null characters. It returns the position of the start of the matching text range or -1 for failure, in which case the target is not moved. The flags used by SCI_SEARCHINTARGET such as SCFIND_MATCHCASE, SCFIND_WHOLEWORD, SCFIND_WORDSTART, and SCFIND_REGEXP can be set with SCI_SETSEARCHFLAGS. SCI_SEARCHINTARGET may be simpler for some clients to use than SCI_FINDTEXT, as that requires using a pointer to a structure.

SCI_SETTARGETSTART(int pos)
SCI_GETTARGETSTART
SCI_SETTARGETEND(int pos)
SCI_GETTARGETEND
SCI_TARGETFROMSELECTION
SCI_SETSEARCHFLAGS(int searchFlags)
SCI_GETSEARCHFLAGS
SCI_SEARCHINTARGET(int length, const char *text)
SCI_REPLACETARGET(int length, const char *text)
SCI_REPLACETARGETRE(int length, const char *text)
SCI_GETTAG(int tagNumber, char *tagValue)

SCI_SETTARGETSTART(int pos)
SCI_GETTARGETSTART
SCI_SETTARGETEND(int pos)
SCI_GETTARGETEND
These functions set and return the start and end of the target. When searching in non-regular expression mode, you can set start greater than end to find the last matching text in the target rather than the first matching text. The target is also set by a successful SCI_SEARCHINTARGET.

SCI_TARGETFROMSELECTION
Set the target start and end to the start and end positions of the selection.

SCI_SETSEARCHFLAGS(int searchFlags)
SCI_GETSEARCHFLAGS
These get and set the searchFlags used by SCI_SEARCHINTARGET. There are several option flags including a simple regular expression search.

SCI_SEARCHINTARGET(int length, const char *text)
This searches for the first occurrence of a text string in the target defined by SCI_SETTARGETSTART and SCI_SETTARGETEND. The text string is not zero terminated; the size is set by length. The search is modified by the search flags set by SCI_SETSEARCHFLAGS. If the search succeeds, the target is set to the found text and the return value is the position of the start of the matching text. If the search fails, the result is -1.

SCI_REPLACETARGET(int length, const char *text)
If length is -1, text is a zero terminated string, otherwise length sets the number of character to replace the target with. After replacement, the target range refers to the replacement text. The return value is the length of the replacement string.
Note that the recommended way to delete text in the document is to set the target to the text to be removed, and to perform a replace target with an empty string.

SCI_REPLACETARGETRE(int length, const char *text)
This replaces the target using regular expressions. If length is -1, text is a zero terminated string, otherwise length is the number of characters to use. The replacement string is formed from the text string with any sequences of \1 through \9 replaced by tagged matches from the most recent regular expression search. \0 is replaced with all the matched text from the most recent search. After replacement, the target range refers to the replacement text. The return value is the length of the replacement string.

SCI_GETTAG(int tagNumber, char *tagValue)
Discover what text was matched by tagged expressions in a regular expression search. This is useful if the application wants to interpret the replacement string itself.

See also: SCI_FINDTEXT

Overtype

SCI_SETOVERTYPE(bool overType)
SCI_GETOVERTYPE
When overtype is enabled, each typed character replaces the character to the right of the text caret. When overtype is disabled, characters are inserted at the caret. SCI_GETOVERTYPE returns TRUE (1) if overtyping is active, otherwise FALSE (0) will be returned. Use SCI_SETOVERTYPE to set the overtype mode.

Cut, copy and paste

SCI_CUT
SCI_COPY
SCI_PASTE
SCI_CLEAR
SCI_CANPASTE
SCI_COPYRANGE(int start, int end)
SCI_COPYTEXT(int length, const char *text)
SCI_COPYALLOWLINE
SCI_SETPASTECONVERTENDINGS(bool convert)
SCI_GETPASTECONVERTENDINGS

SCI_CUT
SCI_COPY
SCI_PASTE
SCI_CLEAR
SCI_CANPASTE
SCI_COPYALLOWLINE
These commands perform the standard tasks of cutting and copying data to the clipboard, pasting from the clipboard into the document, and clearing the document. SCI_CANPASTE returns non-zero if the document isn't read-only and if the selection doesn't contain protected text. If you need a "can copy" or "can cut", use SCI_GETSELECTIONEMPTY(), which will be zero if there are any non-empty selection ranges implying that a copy or cut to the clipboard should work.

GTK+ does not really support SCI_CANPASTE and always returns TRUE unless the document is read-only.

On X, the clipboard is asynchronous and may require several messages between the destination and source applications. Data from SCI_PASTE will not arrive in the document immediately.

SCI_COPYALLOWLINE works the same as SCI_COPY except that if the selection is empty then the current line is copied. On Windows, an extra "MSDEVLineSelect" marker is added to the clipboard which is then used in SCI_PASTE to paste the whole line before the current line.

SCI_COPYRANGE(int start, int end)
SCI_COPYTEXT(int length, const char *text)

SCI_COPYRANGE copies a range of text from the document to the system clipboard and SCI_COPYTEXT copies a supplied piece of text to the system clipboard.

SCI_SETPASTECONVERTENDINGS(bool convert)
SCI_GETPASTECONVERTENDINGS
If this property is set then when text is pasted any line ends are converted to match the document's end of line mode as set with SCI_SETEOLMODE. Currently only changeable on Windows. On GTK+ pasted text is always converted.

Error handling

SCI_SETSTATUS(int status)
SCI_GETSTATUS
If an error occurs, Scintilla may set an internal error number that can be retrieved with SCI_GETSTATUS. To clear the error status call SCI_SETSTATUS(0). The currently defined statuses are:

SC_STATUS_OK 0 No failures
SC_STATUS_FAILURE 1 Generic failure
SC_STATUS_BADALLOC 2 Memory is exhausted

Undo and Redo

Scintilla has multiple level undo and redo. It will continue to collect undoable actions until memory runs out. Scintilla saves actions that change the document. Scintilla does not save caret and selection movements, view scrolling and the like. Sequences of typing or deleting are compressed into single transactions to make it easier to undo and redo at a sensible level of detail. Sequences of actions can be combined into transactions that are undone as a unit. These sequences occur between SCI_BEGINUNDOACTION and SCI_ENDUNDOACTION messages. These transactions can be nested and only the top-level sequences are undone as units.

SCI_UNDO
SCI_CANUNDO
SCI_EMPTYUNDOBUFFER
SCI_REDO
SCI_CANREDO
SCI_SETUNDOCOLLECTION(bool collectUndo)
SCI_GETUNDOCOLLECTION
SCI_BEGINUNDOACTION
SCI_ENDUNDOACTION
SCI_ADDUNDOACTION(int token, int flags)

SCI_UNDO
SCI_CANUNDO
SCI_UNDO undoes one action, or if the undo buffer has reached a SCI_ENDUNDOACTION point, all the actions back to the corresponding SCI_BEGINUNDOACTION.

SCI_CANUNDO returns 0 if there is nothing to undo, and 1 if there is. You would typically use the result of this message to enable/disable the Edit menu Undo command.

SCI_REDO
SCI_CANREDO
SCI_REDO undoes the effect of the last SCI_UNDO operation.

SCI_CANREDO returns 0 if there is no action to redo and 1 if there are undo actions to redo. You could typically use the result of this message to enable/disable the Edit menu Redo command.

SCI_EMPTYUNDOBUFFER
This command tells Scintilla to forget any saved undo or redo history. It also sets the save point to the start of the undo buffer, so the document will appear to be unmodified. This does not cause the SCN_SAVEPOINTREACHED notification to be sent to the container.

See also: SCI_SETSAVEPOINT

SCI_SETUNDOCOLLECTION(bool collectUndo)
SCI_GETUNDOCOLLECTION
You can control whether Scintilla collects undo information with SCI_SETUNDOCOLLECTION. Pass in true (1) to collect information and false (0) to stop collecting. If you stop collection, you should also use SCI_EMPTYUNDOBUFFER to avoid the undo buffer being unsynchronized with the data in the buffer.

You might wish to turn off saving undo information if you use the Scintilla to store text generated by a program (a Log view) or in a display window where text is often deleted and regenerated.

SCI_BEGINUNDOACTION
SCI_ENDUNDOACTION
Send these two messages to Scintilla to mark the beginning and end of a set of operations that you want to undo all as one operation but that you have to generate as several operations. Alternatively, you can use these to mark a set of operations that you do not want to have combined with the preceding or following operations if they are undone.

SCI_ADDUNDOACTION(int token, int flags)
The container can add its own actions into the undo stack by calling SCI_ADDUNDOACTION and an SCN_MODIFIED notification will be sent to the container with the SC_MOD_CONTAINER flag when it is time to undo (SC_PERFORMED_UNDO) or redo (SC_PERFORMED_REDO) the action. The token argument supplied is returned in the token field of the notification.

For example, if the container wanted to allow undo and redo of a 'toggle bookmark' command then it could call SCI_ADDUNDOACTION(line, 0) each time the command is performed. Then when it receives a notification to undo or redo it toggles a bookmark on the line given by the token field. If there are different types of commands or parameters that need to be stored into the undo stack then the container should maintain a stack of its own for the document and use the current position in that stack as the argument to SCI_ADDUNDOACTION(line). SCI_ADDUNDOACTION commands are not combined together into a single undo transaction unless grouped with SCI_BEGINUNDOACTION and SCI_ENDUNDOACTION.

The flags argument can be UNDO_MAY_COALESCE (1) if the container action may be coalesced along with any insertion and deletion actions into a single compound action, otherwise 0. Coalescing treats coalescible container actions as transparent so will still only group together insertions that look like typing or deletions that look like multiple uses of the Backspace or Delete keys.

Selection and information

Scintilla maintains a selection that stretches between two points, the anchor and the current position. If the anchor and the current position are the same, there is no selected text. Positions in the document range from 0 (before the first character), to the document size (after the last character). If you use messages, there is nothing to stop you setting a position that is in the middle of a CRLF pair, or in the middle of a 2 byte character. However, keyboard commands will not move the caret into such positions.

SCI_GETTEXTLENGTH
SCI_GETLENGTH
SCI_GETLINECOUNT
SCI_SETFIRSTVISIBLELINE(int lineDisplay)
SCI_GETFIRSTVISIBLELINE
SCI_LINESONSCREEN
SCI_GETMODIFY
SCI_SETSEL(int anchorPos, int currentPos)
SCI_GOTOPOS(int position)
SCI_GOTOLINE(int line)
SCI_SETCURRENTPOS(int position)
SCI_GETCURRENTPOS
SCI_SETANCHOR(int position)
SCI_GETANCHOR
SCI_SETSELECTIONSTART(int position)
SCI_GETSELECTIONSTART
SCI_SETSELECTIONEND(int position)
SCI_GETSELECTIONEND
SCI_SETEMPTYSELECTION(int pos)
SCI_SELECTALL
SCI_LINEFROMPOSITION(int position)
SCI_POSITIONFROMLINE(int line)
SCI_GETLINEENDPOSITION(int line)
SCI_LINELENGTH(int line)
SCI_GETCOLUMN(int position)
SCI_FINDCOLUMN(int line, int column)
SCI_POSITIONFROMPOINT(int x, int y)
SCI_POSITIONFROMPOINTCLOSE(int x, int y)
SCI_CHARPOSITIONFROMPOINT(int x, int y)
SCI_CHARPOSITIONFROMPOINTCLOSE(int x, int y)
SCI_POINTXFROMPOSITION(<unused>, int position)
SCI_POINTYFROMPOSITION(<unused>, int position)
SCI_HIDESELECTION(bool hide)
SCI_GETSELTEXT(<unused>, char *text)
SCI_GETCURLINE(int textLen, char *text)
SCI_SELECTIONISRECTANGLE
SCI_SETSELECTIONMODE(int mode)
SCI_GETSELECTIONMODE
SCI_GETLINESELSTARTPOSITION(int line)
SCI_GETLINESELENDPOSITION(int line)
SCI_MOVECARETINSIDEVIEW
SCI_WORDENDPOSITION(int position, bool onlyWordCharacters)
SCI_WORDSTARTPOSITION(int position, bool onlyWordCharacters)
SCI_POSITIONBEFORE(int position)
SCI_POSITIONAFTER(int position)
SCI_COUNTCHARACTERS(int startPos, int endPos)
SCI_TEXTWIDTH(int styleNumber, const char *text)
SCI_TEXTHEIGHT(int line)
SCI_CHOOSECARETX
SCI_MOVESELECTEDLINESUP
SCI_MOVESELECTEDLINESDOWN

SCI_GETTEXTLENGTH
SCI_GETLENGTH
Both these messages return the length of the document in bytes.

SCI_GETLINECOUNT
This returns the number of lines in the document. An empty document contains 1 line. A document holding only an end of line sequence has 2 lines.

SCI_SETFIRSTVISIBLELINE(int lineDisplay)
SCI_GETFIRSTVISIBLELINE
These messages retrieve and set the line number of the first visible line in the Scintilla view. The first line in the document is numbered 0. The value is a visible line rather than a document line.

SCI_LINESONSCREEN
This returns the number of complete lines visible on the screen. With a constant line height, this is the vertical space available divided by the line separation. Unless you arrange to size your window to an integral number of lines, there may be a partial line visible at the bottom of the view.

SCI_GETMODIFY
This returns non-zero if the document is modified and 0 if it is unmodified. The modified status of a document is determined by the undo position relative to the save point. The save point is set by SCI_SETSAVEPOINT, usually when you have saved data to a file.

If you need to be notified when the document becomes modified, Scintilla notifies the container that it has entered or left the save point with the SCN_SAVEPOINTREACHED and SCN_SAVEPOINTLEFT notification messages.

SCI_SETSEL(int anchorPos, int currentPos)
This message sets both the anchor and the current position. If currentPos is negative, it means the end of the document. If anchorPos is negative, it means remove any selection (i.e. set the anchor to the same position as currentPos). The caret is scrolled into view after this operation.

SCI_GOTOPOS(int pos)
This removes any selection, sets the caret at pos and scrolls the view to make the caret visible, if necessary. It is equivalent to SCI_SETSEL(pos, pos). The anchor position is set the same as the current position.

SCI_GOTOLINE(int line)
This removes any selection and sets the caret at the start of line number line and scrolls the view (if needed) to make it visible. The anchor position is set the same as the current position. If line is outside the lines in the document (first line is 0), the line set is the first or last.

SCI_SETCURRENTPOS(int pos)
This sets the current position and creates a selection between the anchor and the current position. The caret is not scrolled into view.

See also: SCI_SCROLLCARET

SCI_GETCURRENTPOS
This returns the current position.

SCI_SETANCHOR(int pos)
This sets the anchor position and creates a selection between the anchor position and the current position. The caret is not scrolled into view.

See also: SCI_SCROLLCARET

SCI_GETANCHOR
This returns the current anchor position.

SCI_SETSELECTIONSTART(int pos)
SCI_SETSELECTIONEND(int pos)
These set the selection based on the assumption that the anchor position is less than the current position. They do not make the caret visible. The table shows the positions of the anchor and the current position after using these messages.

anchor current
SCI_SETSELECTIONSTART pos Max(pos, current)
SCI_SETSELECTIONEND Min(anchor, pos) pos

See also: SCI_SCROLLCARET

SCI_GETSELECTIONSTART
SCI_GETSELECTIONEND
These return the start and end of the selection without regard to which end is the current position and which is the anchor. SCI_GETSELECTIONSTART returns the smaller of the current position or the anchor position. SCI_GETSELECTIONEND returns the larger of the two values.

SCI_SETEMPTYSELECTION(int pos)
This removes any selection and sets the caret at pos. The caret is not scrolled into view.

SCI_SELECTALL
This selects all the text in the document. The current position is not scrolled into view.

SCI_LINEFROMPOSITION(int pos)
This message returns the line that contains the position pos in the document. The return value is 0 if pos <= 0. The return value is the last line if pos is beyond the end of the document.

SCI_POSITIONFROMLINE(int line)
This returns the document position that corresponds with the start of the line. If line is negative, the position of the line holding the start of the selection is returned. If line is greater than the lines in the document, the return value is -1. If line is equal to the number of lines in the document (i.e. 1 line past the last line), the return value is the end of the document.

SCI_GETLINEENDPOSITION(int line)
This returns the position at the end of the line, before any line end characters. If line is the last line in the document (which does not have any end of line characters), the result is the size of the document. If line is negative or line >= SCI_GETLINECOUNT(), the result is undefined.

SCI_LINELENGTH(int line)
This returns the length of the line, including any line end characters. If line is negative or beyond the last line in the document, the result is 0. If you want the length of the line not including any end of line characters, use SCI_GETLINEENDPOSITION(line) - SCI_POSITIONFROMLINE(line).

SCI_GETSELTEXT(<unused>, char *text)
This copies the currently selected text and a terminating 0 byte to the text buffer. The buffer size should be determined by calling with a NULL pointer for the text argument SCI_GETSELTEXT(0,0). This allows for rectangular and discontiguous selections as well as simple selections. See Multiple Selection for information on how multiple and rectangular selections and virtual space are copied.

See also: SCI_GETCURLINE, SCI_GETLINE, SCI_GETTEXT, SCI_GETSTYLEDTEXT, SCI_GETTEXTRANGE

SCI_GETCURLINE(int textLen, char *text)
This retrieves the text of the line containing the caret and returns the position within the line of the caret. Pass in char* text pointing at a buffer large enough to hold the text you wish to retrieve and a terminating 0 character. Set textLen to the length of the buffer which must be at least 1 to hold the terminating 0 character. If the text argument is 0 then the length that should be allocated to store the entire current line is returned.

See also: SCI_GETSELTEXT, SCI_GETLINE, SCI_GETTEXT, SCI_GETSTYLEDTEXT, SCI_GETTEXTRANGE

SCI_SELECTIONISRECTANGLE
This returns 1 if the current selection is in rectangle mode, 0 if not.

SCI_SETSELECTIONMODE(int mode)
SCI_GETSELECTIONMODE
The two functions set and get the selection mode, which can be stream (SC_SEL_STREAM=0) or rectangular (SC_SEL_RECTANGLE=1) or by lines (SC_SEL_LINES=2) or thin rectangular (SC_SEL_THIN=3). When set in these modes, regular caret moves will extend or reduce the selection, until the mode is cancelled by a call with same value or with SCI_CANCEL. The get function returns the current mode even if the selection was made by mouse or with regular extended moves. SC_SEL_THIN is the mode after a rectangular selection has been typed into and ensures that no characters are selected.

SCI_GETLINESELSTARTPOSITION(int line)
SCI_GETLINESELENDPOSITION(int line)
Retrieve the position of the start and end of the selection at the given line with INVALID_POSITION returned if no selection on this line.

SCI_MOVECARETINSIDEVIEW
If the caret is off the top or bottom of the view, it is moved to the nearest line that is visible to its current position. Any selection is lost.

SCI_WORDENDPOSITION(int position, bool onlyWordCharacters)
SCI_WORDSTARTPOSITION(int position, bool onlyWordCharacters)
These messages return the start and end of words using the same definition of words as used internally within Scintilla. You can set your own list of characters that count as words with SCI_SETWORDCHARS. The position sets the start or the search, which is forwards when searching for the end and backwards when searching for the start.

Set onlyWordCharacters to true (1) to stop searching at the first non-word character in the search direction. If onlyWordCharacters is false (0), the first character in the search direction sets the type of the search as word or non-word and the search stops at the first non-matching character. Searches are also terminated by the start or end of the document.

If "w" represents word characters and "." represents non-word characters and "|" represents the position and true or false is the state of onlyWordCharacters:

Initial state end, true end, false start, true start, false
..ww..|..ww.. ..ww..|..ww.. ..ww....|ww.. ..ww..|..ww.. ..ww|....ww..
....ww|ww.... ....wwww|.... ....wwww|.... ....|wwww.... ....|wwww....
..ww|....ww.. ..ww|....ww.. ..ww....|ww.. ..|ww....ww.. ..|ww....ww..
..ww....|ww.. ..ww....ww|.. ..ww....ww|.. ..ww....|ww.. ..ww|....ww..

SCI_POSITIONBEFORE(int position)
SCI_POSITIONAFTER(int position)
These messages return the position before and after another position in the document taking into account the current code page. The minimum position returned is 0 and the maximum is the last position in the document. If called with a position within a multi byte character will return the position of the start/end of that character.

SCI_COUNTCHARACTERS(int startPos, int endPos)
Returns the number of whole characters between two positions..

SCI_TEXTWIDTH(int styleNumber, const char *text)
This returns the pixel width of a string drawn in the given styleNumber which can be used, for example, to decide how wide to make the line number margin in order to display a given number of numerals.

SCI_TEXTHEIGHT(int line)
This returns the height in pixels of a particular line. Currently all lines are the same height.

SCI_GETCOLUMN(int pos)
This message returns the column number of a position pos within the document taking the width of tabs into account. This returns the column number of the last tab on the line before pos, plus the number of characters between the last tab and pos. If there are no tab characters on the line, the return value is the number of characters up to the position on the line. In both cases, double byte characters count as a single character. This is probably only useful with monospaced fonts.

SCI_FINDCOLUMN(int line, int column)
This message returns the position of a column on a line taking the width of tabs into account. It treats a multi-byte character as a single column. Column numbers, like lines start at 0.

SCI_POSITIONFROMPOINT(int x, int y)
SCI_POSITIONFROMPOINTCLOSE(int x, int y)
SCI_POSITIONFROMPOINT finds the closest character position to a point and SCI_POSITIONFROMPOINTCLOSE is similar but returns -1 if the point is outside the window or not close to any characters.

SCI_CHARPOSITIONFROMPOINT(int x, int y)
SCI_CHARPOSITIONFROMPOINTCLOSE(int x, int y)
SCI_CHARPOSITIONFROMPOINT finds the closest character to a point and SCI_CHARPOSITIONFROMPOINTCLOSE is similar but returns -1 if the point is outside the window or not close to any characters. This is similar to the previous methods but finds characters rather than inter-character positions.

SCI_POINTXFROMPOSITION(<unused>, int pos)
SCI_POINTYFROMPOSITION(<unused>, int pos)
These messages return the x and y display pixel location of text at position pos in the document.

SCI_HIDESELECTION(bool hide)
The normal state is to make the selection visible by drawing it as set by SCI_SETSELFORE and SCI_SETSELBACK. However, if you hide the selection, it is drawn as normal text.

SCI_CHOOSECARETX
Scintilla remembers the x value of the last position horizontally moved to explicitly by the user and this value is then used when moving vertically such as by using the up and down keys. This message sets the current x position of the caret as the remembered value.

SCI_MOVESELECTEDLINESUP
Move the selected lines up one line, shifting the line above after the selection. The selection will be automatically extended to the beginning of the selection's first line and the end of the seletion's last line. If nothing was selected, the line the cursor is currently at will be selected.

SCI_MOVESELECTEDLINESDOWN
Move the selected lines down one line, shifting the line below before the selection. The selection will be automatically extended to the beginning of the selection's first line and the end of the seletion's last line. If nothing was selected, the line the cursor is currently at will be selected.

Multiple Selection and Virtual Space

SCI_SETMULTIPLESELECTION(bool multipleSelection)
SCI_GETMULTIPLESELECTION
SCI_SETADDITIONALSELECTIONTYPING(bool additionalSelectionTyping)
SCI_GETADDITIONALSELECTIONTYPING
SCI_SETMULTIPASTE(int multiPaste)
SCI_GETMULTIPASTE
SCI_SETVIRTUALSPACEOPTIONS(int virtualSpaceOptions)
SCI_GETVIRTUALSPACEOPTIONS
SCI_SETRECTANGULARSELECTIONMODIFIER(int modifier)
SCI_GETRECTANGULARSELECTIONMODIFIER

SCI_GETSELECTIONS
SCI_GETSELECTIONEMPTY
SCI_CLEARSELECTIONS
SCI_SETSELECTION(int caret, int anchor)
SCI_ADDSELECTION(int caret, int anchor)
SCI_SETMAINSELECTION(int selection)
SCI_GETMAINSELECTION

SCI_SETSELECTIONNCARET(int selection, int pos)
SCI_GETSELECTIONNCARET(int selection)
SCI_SETSELECTIONNCARETVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNCARETVIRTUALSPACE(int selection)
SCI_SETSELECTIONNANCHOR(int selection, int posAnchor)
SCI_GETSELECTIONNANCHOR(int selection)
SCI_SETSELECTIONNANCHORVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNANCHORVIRTUALSPACE(int selection)
SCI_SETSELECTIONNSTART(int selection, int pos)
SCI_GETSELECTIONNSTART(int selection)
SCI_SETSELECTIONNEND(int selection, int pos)
SCI_GETSELECTIONNEND(int selection)

SCI_SETRECTANGULARSELECTIONCARET(int pos)
SCI_GETRECTANGULARSELECTIONCARET
SCI_SETRECTANGULARSELECTIONCARETVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONCARETVIRTUALSPACE
SCI_SETRECTANGULARSELECTIONANCHOR(int posAnchor)
SCI_GETRECTANGULARSELECTIONANCHOR
SCI_SETRECTANGULARSELECTIONANCHORVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONANCHORVIRTUALSPACE

SCI_SETADDITIONALSELALPHA(int alpha)
SCI_GETADDITIONALSELALPHA
SCI_SETADDITIONALSELFORE(int colour)
SCI_SETADDITIONALSELBACK(int colour)
SCI_SETADDITIONALCARETFORE(int colour)
SCI_GETADDITIONALCARETFORE
SCI_SETADDITIONALCARETSBLINK(bool additionalCaretsBlink)
SCI_GETADDITIONALCARETSBLINK
SCI_SETADDITIONALCARETSVISIBLE(bool additionalCaretsVisible)
SCI_GETADDITIONALCARETSVISIBLE

SCI_SWAPMAINANCHORCARET
SCI_ROTATESELECTION

There may be multiple selections active at one time. More selections are made by holding down the Ctrl key while dragging with the mouse. The most recent selection is the main selection and determines which part of the document is shown automatically. Any selection apart from the main selection is called an additional selection. The calls in the previous section operate on the main selection. There is always at least one selection.

Rectangular selections are handled as multiple selections although the original rectangular range is remembered so that subsequent operations may be handled differently for rectangular selections. For example, pasting a rectangular selection places each piece in a vertical column.

Virtual space is space beyond the end of each line. The caret may be moved into virtual space but no real space will be added to the document until there is some text typed or some other text insertion command is used.

When discontiguous selections are copied to the clipboard, each selection is added to the clipboard text in order with no delimiting characters. For rectangular selections the document's line end is added after each line's text. Rectangular selections are always copied from top line to bottom, not in the in order of selection.Virtual space is not copied.

SCI_SETMULTIPLESELECTION(bool multipleSelection)
SCI_GETMULTIPLESELECTION
Enable or disable multiple selection. When multiple selection is disabled, it is not possible to select multiple ranges by holding down the Ctrl key while dragging with the mouse.

SCI_SETADDITIONALSELECTIONTYPING(bool additionalSelectionTyping)
SCI_GETADDITIONALSELECTIONTYPING
Whether typing, backspace, or delete works with multiple selections simultaneously.

SCI_SETMULTIPASTE(int multiPaste)
SCI_GETMULTIPASTE
When pasting into multiple selections, the pasted text can go into just the main selection with SC_MULTIPASTE_ONCE=0 or into each selection with SC_MULTIPASTE_EACH=1. SC_MULTIPASTE_ONCE is the default.

SCI_SETVIRTUALSPACEOPTIONS(int virtualSpace)
SCI_GETVIRTUALSPACEOPTIONS
Virtual space can be enabled or disabled for rectangular selections or in other circumstances or in both. There are two bit flags SCVS_RECTANGULARSELECTION=1 and SCVS_USERACCESSIBLE=2 which can be set independently. SCVS_NONE=0, the default, disables all use of virtual space.

SCI_SETRECTANGULARSELECTIONMODIFIER(int modifier)
SCI_GETRECTANGULARSELECTIONMODIFIER
On GTK+, the key used to indicate that a rectangular selection should be created when combined with a mouse drag can be set. The three possible values are SCMOD_CTRL=2 (default), SCMOD_ALT=4 or SCMOD_SUPER=8. Since SCMOD_ALT is often already used by a window manager, the window manager may need configuring to allow this choice. SCMOD_SUPER is often a system dependent modifier key such as the Left Windows key on a Windows keyboard or the Command key on a Mac.

SCI_GETSELECTIONS
Return the number of selections currently active.

SCI_GETSELECTIONEMPTY
Return 1 if every selected range is empty else 0.

SCI_CLEARSELECTIONS
Set a single empty selection at 0 as the only selection.

SCI_SETSELECTION(int caret, int anchor)
Set a single selection from anchor to caret as the only selection.

SCI_ADDSELECTION(int caret, int anchor)
Add a new selection from anchor to caret as the main selection retaining all other selections as additional selections. Since there is always at least one selection, to set a list of selections, the first selection should be added with SCI_SETSELECTION and later selections added with SCI_ADDSELECTION

SCI_SETMAINSELECTION(int selection)
SCI_GETMAINSELECTION
One of the selections is the main selection which is used to determine what range of text is automatically visible. The main selection may be displayed in different colours or with a differently styled caret. Only an already existing selection can be made main.

SCI_SETSELECTIONNCARET(int selection, int pos)
SCI_GETSELECTIONNCARET(int selection)
SCI_SETSELECTIONNCARETVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNCARETVIRTUALSPACE(int selection)
SCI_SETSELECTIONNANCHOR(int selection, int posAnchor)
SCI_GETSELECTIONNANCHOR(int selection)
SCI_SETSELECTIONNANCHORVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNANCHORVIRTUALSPACE(int selection)
Set or query the position and amount of virtual space for the caret and anchor of each already existing selection.

SCI_SETSELECTIONNSTART(int selection, int pos)
SCI_GETSELECTIONNSTART(int selection)
SCI_SETSELECTIONNEND(int selection, int pos)
SCI_GETSELECTIONNEND(int selection)
Set or query the start and end position of each already existing selection. Mostly of use to query each range for its text.

SCI_SETRECTANGULARSELECTIONCARET(int pos)
SCI_GETRECTANGULARSELECTIONCARET
SCI_SETRECTANGULARSELECTIONCARETVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONCARETVIRTUALSPACE
SCI_SETRECTANGULARSELECTIONANCHOR(int posAnchor)
SCI_GETRECTANGULARSELECTIONANCHOR
SCI_SETRECTANGULARSELECTIONANCHORVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONANCHORVIRTUALSPACE
Set or query the position and amount of virtual space for the caret and anchor of the rectangular selection. After setting the rectangular selection, this is broken down into multiple selections, one for each line.

SCI_SETADDITIONALSELALPHA(int alpha)
SCI_GETADDITIONALSELALPHA
SCI_SETADDITIONALSELFORE(int colour)
SCI_SETADDITIONALSELBACK(int colour)
Modify the appearence of additional selections so that they can be differentiated from the main selection which has its appearence set with SCI_SETSELALPHA, SCI_GETSELALPHA, SCI_SETSELFORE, and SCI_SETSELBACK.

SCI_SETADDITIONALCARETFORE(int colour)
SCI_GETADDITIONALCARETFORE
SCI_SETADDITIONALCARETSBLINK(bool additionalCaretsBlink)
SCI_GETADDITIONALCARETSBLINK
Modify the appearence of additional carets so that they can be differentiated from the main caret which has its appearence set with SCI_SETCARETFORE, SCI_GETCARETFORE, SCI_SETCARETPERIOD, and SCI_GETCARETPERIOD.

SCI_SETADDITIONALCARETSVISIBLE(bool additionalCaretsVisible)
SCI_GETADDITIONALCARETSVISIBLE
Determine whether to show additional carets (defaults to true).

SCI_SWAPMAINANCHORCARET
SCI_ROTATESELECTION
These commands may be assigned to keys to make it possible to manipulate multiple selections. SCI_SWAPMAINANCHORCARET moves the caret to the opposite end of the main selection. SCI_ROTATESELECTION makes the next selection be the main selection.

Scrolling and automatic scrolling

SCI_LINESCROLL(int column, int line)
SCI_SCROLLCARET
SCI_SCROLLRANGE(int secondary, int primary)
SCI_SETXCARETPOLICY(int caretPolicy, int caretSlop)
SCI_SETYCARETPOLICY(int caretPolicy, int caretSlop)
SCI_SETVISIBLEPOLICY(int caretPolicy, int caretSlop)
SCI_SETHSCROLLBAR(bool visible)
SCI_GETHSCROLLBAR
SCI_SETVSCROLLBAR(bool visible)
SCI_GETVSCROLLBAR
SCI_GETXOFFSET
SCI_SETXOFFSET(int xOffset)
SCI_SETSCROLLWIDTH(int pixelWidth)
SCI_GETSCROLLWIDTH
SCI_SETSCROLLWIDTHTRACKING(bool tracking)
SCI_GETSCROLLWIDTHTRACKING
SCI_SETENDATLASTLINE(bool endAtLastLine)
SCI_GETENDATLASTLINE

SCI_LINESCROLL(int column, int line)
This will attempt to scroll the display by the number of columns and lines that you specify. Positive line values increase the line number at the top of the screen (i.e. they move the text upwards as far as the user is concerned), Negative line values do the reverse.

The column measure is the width of a space in the default style. Positive values increase the column at the left edge of the view (i.e. they move the text leftwards as far as the user is concerned). Negative values do the reverse.

See also: SCI_SETXOFFSET

SCI_SCROLLCARET
If the current position (this is the caret if there is no selection) is not visible, the view is scrolled to make it visible according to the current caret policy.

SCI_SCROLLRANGE(int secondary, int primary)
Scroll the argument positions and the range between them into view giving priority to the primary position then the secondary position. The behaviour is similar to SCI_SCROLLCARET with the primary position used instead of the caret. An effort is then made to ensure that the secondary position and range between are also visible. This may be used to make a search match visible.

SCI_SETXCARETPOLICY(int caretPolicy, int caretSlop)
SCI_SETYCARETPOLICY(int caretPolicy, int caretSlop)
These set the caret policy. The value of caretPolicy is a combination of CARET_SLOP, CARET_STRICT, CARET_JUMPS and CARET_EVEN.

CARET_SLOP If set, we can define a slop value: caretSlop. This value defines an unwanted zone (UZ) where the caret is... unwanted. This zone is defined as a number of pixels near the vertical margins, and as a number of lines near the horizontal margins. By keeping the caret away from the edges, it is seen within its context. This makes it likely that the identifier that the caret is on can be completely seen, and that the current line is seen with some of the lines following it, which are often dependent on that line.
CARET_STRICT If set, the policy set by CARET_SLOP is enforced... strictly. The caret is centred on the display if caretSlop is not set, and cannot go in the UZ if caretSlop is set.
CARET_JUMPS If set, the display is moved more energetically so the caret can move in the same direction longer before the policy is applied again. '3UZ' notation is used to indicate three time the size of the UZ as a distance to the margin.
CARET_EVEN If not set, instead of having symmetrical UZs, the left and bottom UZs are extended up to right and top UZs respectively. This way, we favour the displaying of useful information: the beginning of lines, where most code reside, and the lines after the caret, for example, the body of a function.
slop strict jumps even Caret can go to the margin On reaching limit (going out of visibility
or going into the UZ) display is...
0 0 0 0 Yes moved to put caret on top/on right
0 0 0 1 Yes moved by one position
0 0 1 0 Yes moved to put caret on top/on right
0 0 1 1 Yes centred on the caret
0 1 - 0 Caret is always on top/on right of display -
0 1 - 1 No, caret is always centred -
1 0 0 0 Yes moved to put caret out of the asymmetrical UZ
1 0 0 1 Yes moved to put caret out of the UZ
1 0 1 0 Yes moved to put caret at 3UZ of the top or right margin
1 0 1 1 Yes moved to put caret at 3UZ of the margin
1 1 - 0 Caret is always at UZ of top/right margin -
1 1 0 1 No, kept out of UZ moved by one position
1 1 1 0 No, kept out of UZ moved to put caret at 3UZ of the margin

SCI_SETVISIBLEPOLICY(int caretPolicy, int caretSlop)
This determines how the vertical positioning is determined when SCI_ENSUREVISIBLEENFORCEPOLICY is called. It takes VISIBLE_SLOP and VISIBLE_STRICT flags for the policy parameter. It is similar in operation to SCI_SETYCARETPOLICY(int caretPolicy, int caretSlop).

SCI_SETHSCROLLBAR(bool visible)
SCI_GETHSCROLLBAR
The horizontal scroll bar is only displayed if it is needed for the assumed width. If you never wish to see it, call SCI_SETHSCROLLBAR(0). Use SCI_SETHSCROLLBAR(1) to enable it again. SCI_GETHSCROLLBAR returns the current state. The default state is to display it when needed.

See also: SCI_SETSCROLLWIDTH.

SCI_SETVSCROLLBAR(bool visible)
SCI_GETVSCROLLBAR
By default, the vertical scroll bar is always displayed when required. You can choose to hide or show it with SCI_SETVSCROLLBAR and get the current state with SCI_GETVSCROLLBAR.

SCI_SETXOFFSET(int xOffset)
SCI_GETXOFFSET
The xOffset is the horizontal scroll position in pixels of the start of the text view. A value of 0 is the normal position with the first text column visible at the left of the view.

See also: SCI_LINESCROLL

SCI_SETSCROLLWIDTH(int pixelWidth)
SCI_GETSCROLLWIDTH
For performance, Scintilla does not measure the display width of the document to determine the properties of the horizontal scroll bar. Instead, an assumed width is used. These messages set and get the document width in pixels assumed by Scintilla. The default value is 2000. To ensure the width of the currently visible lines can be scrolled use SCI_SETSCROLLWIDTHTRACKING

SCI_SETSCROLLWIDTHTRACKING(bool tracking)
SCI_GETSCROLLWIDTHTRACKING
If scroll width tracking is enabled then the scroll width is adjusted to ensure that all of the lines currently displayed can be completely scrolled. This mode never adjusts the scroll width to be narrower.

SCI_SETENDATLASTLINE(bool endAtLastLine)
SCI_GETENDATLASTLINE
SCI_SETENDATLASTLINE sets the scroll range so that maximum scroll position has the last line at the bottom of the view (default). Setting this to false allows scrolling one page below the last line.

White space

SCI_SETVIEWWS(int wsMode)
SCI_GETVIEWWS
SCI_SETWHITESPACEFORE(bool useWhitespaceForeColour, int colour)
SCI_SETWHITESPACEBACK(bool useWhitespaceBackColour, int colour)
SCI_SETWHITESPACESIZE(int size)
SCI_GETWHITESPACESIZE
SCI_SETEXTRAASCENT(int extraAscent)
SCI_GETEXTRAASCENT
SCI_SETEXTRADESCENT(int extraDescent)
SCI_GETEXTRADESCENT

SCI_SETVIEWWS(int wsMode)
SCI_GETVIEWWS
White space can be made visible which may be useful for languages in which white space is significant, such as Python. Space characters appear as small centred dots and tab characters as light arrows pointing to the right. There are also ways to control the display of end of line characters. The two messages set and get the white space display mode. The wsMode argument can be one of:

SCWS_INVISIBLE 0 The normal display mode with white space displayed as an empty background colour.
SCWS_VISIBLEALWAYS 1 White space characters are drawn as dots and arrows,
SCWS_VISIBLEAFTERINDENT 2 White space used for indentation is displayed normally but after the first visible character, it is shown as dots and arrows.

The effect of using any other wsMode value is undefined.

SCI_SETWHITESPACEFORE(bool useWhitespaceForeColour, int colour)
SCI_SETWHITESPACEBACK(bool useWhitespaceBackColour, int colour)
By default, the colour of visible white space is determined by the lexer in use. The foreground and/or background colour of all visible white space can be set globally, overriding the lexer's colours with SCI_SETWHITESPACEFORE and SCI_SETWHITESPACEBACK.

SCI_SETWHITESPACESIZE(int size)
SCI_GETWHITESPACESIZE
SCI_SETWHITESPACESIZE sets the size of the dots used for mark space characters. The SCI_GETWHITESPACESIZE message retrieves the current size.

SCI_SETEXTRAASCENT(int extraAscent)
SCI_GETEXTRAASCENT
SCI_SETEXTRADESCENT(int extraDescent)
SCI_GETEXTRADESCENT
Text is drawn with the base of each character on a 'baseline'. The height of a line is found from the maximum that any style extends above the baseline (its 'ascent'), added to the maximum that any style extends below the baseline (its 'descent'). Space may be added to the maximum ascent (SCI_SETEXTRAASCENT) and the maximum descent (SCI_SETEXTRADESCENT) to allow for more space between lines. This may done to make the text easier to read or to accomodate underlines or highlights.

Cursor

SCI_SETCURSOR(int curType)
SCI_GETCURSOR
The cursor is normally chosen in a context sensitive way, so it will be different over the margin than when over the text. When performing a slow action, you may wish to change to a wait cursor. You set the cursor type with SCI_SETCURSOR. The curType argument can be:

SC_CURSORNORMAL -1 The normal cursor is displayed.
SC_CURSORWAIT  4 The wait cursor is displayed when the mouse is over or owned by the Scintilla window.

Cursor values 1 through 7 have defined cursors, but only SC_CURSORWAIT is usefully controllable. Other values of curType cause a pointer to be displayed. The SCI_GETCURSOR message returns the last cursor type you set, or SC_CURSORNORMAL (-1) if you have not set a cursor type.

Mouse capture

SCI_SETMOUSEDOWNCAPTURES(bool captures)
SCI_GETMOUSEDOWNCAPTURES
When the mouse is pressed inside Scintilla, it is captured so future mouse movement events are sent to Scintilla. This behavior may be turned off with SCI_SETMOUSEDOWNCAPTURES(0).

Line endings

Scintilla can handle the major line end conventions and, depending on settings and the current lexer also support additional Unicode line ends.

Scintilla can interpret any of the Macintosh (\r), Unix (\n) and Windows (\r\n) line ends. When the user presses the Enter key, one of these line end strings is inserted into the buffer. The default is \r\n in Windows and \n in Unix, but this can be changed with the SCI_SETEOLMODE message. You can also convert the entire document to one of these line endings with SCI_CONVERTEOLS. Finally, you can choose to display the line endings with SCI_SETVIEWEOL.

For the UTF-8 encoding, three additional Unicode line ends, Next Line (NEL=U+0085), Line Separator (LS=U+2028), and Paragraph Separator (PS=U+2029) may optionally be interpreted when Unicode line ends is turned on and the current lexer also supports Unicode line ends.

SCI_SETEOLMODE(int eolMode)
SCI_GETEOLMODE
SCI_CONVERTEOLS(int eolMode)
SCI_SETVIEWEOL(bool visible)
SCI_GETVIEWEOL
SCI_GETLINEENDTYPESSUPPORTED
SCI_SETLINEENDTYPESALLOWED(int lineEndBitSet)
SCI_GETLINEENDTYPESALLOWED
SCI_GETLINEENDTYPESACTIVE

SCI_SETEOLMODE(int eolMode)
SCI_GETEOLMODE
SCI_SETEOLMODE sets the characters that are added into the document when the user presses the Enter key. You can set eolMode to one of SC_EOL_CRLF (0), SC_EOL_CR (1), or SC_EOL_LF (2). The SCI_GETEOLMODE message retrieves the current state.

SCI_CONVERTEOLS(int eolMode)
This message changes all the end of line characters in the document to match eolMode. Valid values are: SC_EOL_CRLF (0), SC_EOL_CR (1), or SC_EOL_LF (2).

SCI_SETVIEWEOL(bool visible)
SCI_GETVIEWEOL
Normally, the end of line characters are hidden, but SCI_SETVIEWEOL allows you to display (or hide) them by setting visible true (or false). The visible rendering of the end of line characters is similar to (CR), (LF), or (CR)(LF). SCI_GETVIEWEOL returns the current state.

These features are provisional

SCI_GETLINEENDTYPESSUPPORTED
SCI_GETLINEENDTYPESSUPPORTED reports the different types of line ends supported by the current lexer. This is a bit set although there is currently only a single choice with either SC_LINE_END_TYPE_DEFAULT (0) or SC_LINE_END_TYPE_UNICODE (1). These values are also used by the other messages concerned with Unicode line ends.

SCI_SETLINEENDTYPESALLOWED(int lineEndBitSet)
SCI_GETLINEENDTYPESALLOWED
By default, only the ASCII line ends are interpreted. Unicode line ends may be requested with SCI_SETLINEENDTYPESALLOWED(SC_LINE_END_TYPE_UNICODE) but this will be ineffective unless the lexer also allows you Unicode line ends. SCI_GETLINEENDTYPESALLOWED returns the current state.

SCI_GETLINEENDTYPESACTIVE
SCI_GETLINEENDTYPESACTIVE reports the set of line ends currently interpreted by Scintilla. It is SCI_GETLINEENDTYPESSUPPORTED & SCI_GETLINEENDTYPESALLOWED.

Styling

The styling messages allow you to assign styles to text. The standard Scintilla settings divide the 8 style bits available for each character into 5 bits (0 to 4 = styles 0 to 31) that set a style and three bits (5 to 7) that define indicators. You can change the balance between styles and indicators with SCI_SETSTYLEBITS. If your styling needs can be met by one of the standard lexers, or if you can write your own, then a lexer is probably the easiest way to style your document. If you choose to use the container to do the styling you can use the SCI_SETLEXER command to select SCLEX_CONTAINER, in which case the container is sent a SCN_STYLENEEDED notification each time text needs styling for display. As another alternative, you might use idle time to style the document. Even if you use a lexer, you might use the styling commands to mark errors detected by a compiler. The following commands can be used.

SCI_GETENDSTYLED
SCI_STARTSTYLING(int position, int mask)
SCI_SETSTYLING(int length, int style)
SCI_SETSTYLINGEX(int length, const char *styles)
SCI_SETLINESTATE(int line, int value)
SCI_GETLINESTATE(int line)
SCI_GETMAXLINESTATE

SCI_GETENDSTYLED
Scintilla keeps a record of the last character that is likely to be styled correctly. This is moved forwards when characters after it are styled and moved backwards if changes are made to the text of the document before it. Before drawing text, this position is checked to see if any styling is needed and, if so, a SCN_STYLENEEDED notification message is sent to the container. The container can send SCI_GETENDSTYLED to work out where it needs to start styling. Scintilla will always ask to style whole lines.

SCI_STARTSTYLING(int pos, int mask)
This prepares for styling by setting the styling position pos to start at and a mask indicating which bits of the style bytes can be set. The mask allows styling to occur over several passes, with, for example, basic styling done on an initial pass to ensure that the text of the code is seen quickly and correctly, and then a second slower pass, detecting syntax errors and using indicators to show where these are. For example, with the standard settings of 5 style bits and 3 indicator bits, you would use a mask value of 31 (0x1f) if you were setting text styles and did not want to change the indicators. After SCI_STARTSTYLING, send multiple SCI_SETSTYLING messages for each lexical entity to style.

SCI_SETSTYLING(int length, int style)
This message sets the style of length characters starting at the styling position and then increases the styling position by length, ready for the next call. If sCell is the style byte, the operation is:
if ((sCell & mask) != style) sCell = (sCell & ~mask) | (style & mask);

SCI_SETSTYLINGEX(int length, const char *styles)
As an alternative to SCI_SETSTYLING, which applies the same style to each byte, you can use this message which specifies the styles for each of length bytes from the styling position and then increases the styling position by length, ready for the next call. The length styling bytes pointed at by styles should not contain any bits not set in mask.

SCI_SETLINESTATE(int line, int value)
SCI_GETLINESTATE(int line)
As well as the 8 bits of lexical state stored for each character there is also an integer stored for each line. This can be used for longer lived parse states such as what the current scripting language is in an ASP page. Use SCI_SETLINESTATE to set the integer value and SCI_GETLINESTATE to get the value. Changing the value produces a SC_MOD_CHANGELINESTATE notification.

SCI_GETMAXLINESTATE
This returns the last line that has any line state.

Style definition

While the style setting messages mentioned above change the style numbers associated with text, these messages define how those style numbers are interpreted visually. There are 256 lexer styles that can be set, numbered 0 to STYLE_MAX (255). Unless you use SCI_SETSTYLEBITS to change the number of style bits, styles 0 to 31 are used to set the text attributes. There are also some predefined numbered styles starting at 32, The following STYLE_* constants are defined.

STYLE_DEFAULT 32 This style defines the attributes that all styles receive when the SCI_STYLECLEARALL message is used.
STYLE_LINENUMBER 33 This style sets the attributes of the text used to display line numbers in a line number margin. The background colour set for this style also sets the background colour for all margins that do not have any folding mask bits set. That is, any margin for which mask & SC_MASK_FOLDERS is 0. See SCI_SETMARGINMASKN for more about masks.
STYLE_BRACELIGHT 34 This style sets the attributes used when highlighting braces with the SCI_BRACEHIGHLIGHT message and when highlighting the corresponding indentation with SCI_SETHIGHLIGHTGUIDE.
STYLE_BRACEBAD 35 This style sets the display attributes used when marking an unmatched brace with the SCI_BRACEBADLIGHT message.
STYLE_CONTROLCHAR 36 This style sets the font used when drawing control characters. Only the font, size, bold, italics, and character set attributes are used and not the colour attributes. See also: SCI_SETCONTROLCHARSYMBOL.
STYLE_INDENTGUIDE 37 This style sets the foreground and background colours used when drawing the indentation guides.
STYLE_CALLTIP 38 Call tips normally use the font attributes defined by STYLE_DEFAULT. Use of SCI_CALLTIPUSESTYLE causes call tips to use this style instead. Only the font face name, font size, foreground and background colours and character set attributes are used.
STYLE_LASTPREDEFINED 39 To make it easier for client code to discover the range of styles that are predefined, this is set to the style number of the last predefined style. This is currently set to 39 and the last style with an identifier is 38, which reserves space for one future predefined style.
STYLE_MAX 255 This is not a style but is the number of the maximum style that can be set. Styles between STYLE_LASTPREDEFINED and STYLE_MAX would be appropriate if you used SCI_SETSTYLEBITS to set more than 5 style bits.

For each style you can set the font name, size and use of bold, italic and underline, foreground and background colour and the character set. You can also choose to hide text with a given style, display all characters as upper or lower case and fill from the last character on a line to the end of the line (for embedded languages). There is also an experimental attribute to make text read-only.

It is entirely up to you how you use styles. If you want to use syntax colouring you might use style 0 for white space, style 1 for numbers, style 2 for keywords, style 3 for strings, style 4 for preprocessor, style 5 for operators, and so on.

SCI_STYLERESETDEFAULT
SCI_STYLECLEARALL
SCI_STYLESETFONT(int styleNumber, char *fontName)
SCI_STYLEGETFONT(int styleNumber, char *fontName)
SCI_STYLESETSIZE(int styleNumber, int sizeInPoints)
SCI_STYLEGETSIZE(int styleNumber)
SCI_STYLESETSIZEFRACTIONAL(int styleNumber, int sizeInHundredthPoints)
SCI_STYLEGETSIZEFRACTIONAL(int styleNumber)
SCI_STYLESETBOLD(int styleNumber, bool bold)
SCI_STYLEGETBOLD(int styleNumber)
SCI_STYLESETWEIGHT(int styleNumber, int weight)
SCI_STYLEGETWEIGHT(int styleNumber)
SCI_STYLESETITALIC(int styleNumber, bool italic)
SCI_STYLEGETITALIC(int styleNumber)
SCI_STYLESETUNDERLINE(int styleNumber, bool underline)
SCI_STYLEGETUNDERLINE(int styleNumber)
SCI_STYLESETFORE(int styleNumber, int colour)
SCI_STYLEGETFORE(int styleNumber)
SCI_STYLESETBACK(int styleNumber, int colour)
SCI_STYLEGETBACK(int styleNumber)
SCI_STYLESETEOLFILLED(int styleNumber, bool eolFilled)
SCI_STYLEGETEOLFILLED(int styleNumber)
SCI_STYLESETCHARACTERSET(int styleNumber, int charSet)
SCI_STYLEGETCHARACTERSET(int styleNumber)
SCI_STYLESETCASE(int styleNumber, int caseMode)
SCI_STYLEGETCASE(int styleNumber)
SCI_STYLESETVISIBLE(int styleNumber, bool visible)
SCI_STYLEGETVISIBLE(int styleNumber)
SCI_STYLESETCHANGEABLE(int styleNumber, bool changeable)
SCI_STYLEGETCHANGEABLE(int styleNumber)
SCI_STYLESETHOTSPOT(int styleNumber, bool hotspot)
SCI_STYLEGETHOTSPOT(int styleNumber)

SCI_STYLERESETDEFAULT
This message resets STYLE_DEFAULT to its state when Scintilla was initialised.

SCI_STYLECLEARALL
This message sets all styles to have the same attributes as STYLE_DEFAULT. If you are setting up Scintilla for syntax colouring, it is likely that the lexical styles you set will be very similar. One way to set the styles is to:
1. Set STYLE_DEFAULT to the common features of all styles.
2. Use SCI_STYLECLEARALL to copy this to all styles.
3. Set the style attributes that make your lexical styles different.

SCI_STYLESETFONT(int styleNumber, const char *fontName)
SCI_STYLEGETFONT(int styleNumber, char *fontName)
SCI_STYLESETSIZE(int styleNumber, int sizeInPoints)
SCI_STYLEGETSIZE(int styleNumber)
SCI_STYLESETSIZEFRACTIONAL(int styleNumber, int sizeInHundredthPoints)
SCI_STYLEGETSIZEFRACTIONAL(int styleNumber)
SCI_STYLESETBOLD(int styleNumber, bool bold)
SCI_STYLEGETBOLD(int styleNumber)
SCI_STYLESETWEIGHT(int styleNumber, int weight)
SCI_STYLEGETWEIGHT(int styleNumber)
SCI_STYLESETITALIC(int styleNumber, bool italic)
SCI_STYLEGETITALIC(int styleNumber)
These messages (plus SCI_STYLESETCHARACTERSET) set the font attributes that are used to match the fonts you request to those available. The fontName is a zero terminated string holding the name of a font. Under Windows, only the first 32 characters of the name are used and the name is not case sensitive. For internal caching, Scintilla tracks fonts by name and does care about the casing of font names, so please be consistent. On GTK+, Pango is used to display text.

Sizes can be set to a whole number of points with SCI_STYLESETSIZE or to a fractional point size in hundredths of a point with SCI_STYLESETSIZEFRACTIONAL by multiplying the size by 100 (SC_FONT_SIZE_MULTIPLIER). For example, a text size of 9.4 points is set with SCI_STYLESETSIZEFRACTIONAL(<style>, 940).

The weight or boldness of a font can be set with SCI_STYLESETBOLD or SCI_STYLESETWEIGHT. The weight is a number between 1 and 999 with 1 being very light and 999 very heavy. While any value can be used, fonts often only support between 2 and 4 weights with three weights being common enough to have symbolic names: SC_WEIGHT_NORMAL (400), SC_WEIGHT_SEMIBOLD (600), and SC_WEIGHT_BOLD (700). The SCI_STYLESETBOLD message takes a boolean argument with 0 choosing SC_WEIGHT_NORMAL and 1 SC_WEIGHT_BOLD.

SCI_STYLESETUNDERLINE(int styleNumber, bool underline)
SCI_STYLEGETUNDERLINE(int styleNumber)
You can set a style to be underlined. The underline is drawn in the foreground colour. All characters with a style that includes the underline attribute are underlined, even if they are white space.

SCI_STYLESETFORE(int styleNumber, int colour)
SCI_STYLEGETFORE(int styleNumber)
SCI_STYLESETBACK(int styleNumber, int colour)
SCI_STYLEGETBACK(int styleNumber)
Text is drawn in the foreground colour. The space in each character cell that is not occupied by the character is drawn in the background colour.

SCI_STYLESETEOLFILLED(int styleNumber, bool eolFilled)
SCI_STYLEGETEOLFILLED(int styleNumber)
If the last character in the line has a style with this attribute set, the remainder of the line up to the right edge of the window is filled with the background colour set for the last character. This is useful when a document contains embedded sections in another language such as HTML pages with embedded JavaScript. By setting eolFilled to true and a consistent background colour (different from the background colour set for the HTML styles) to all JavaScript styles then JavaScript sections will be easily distinguished from HTML.

SCI_STYLESETCHARACTERSET(int styleNumber, int charSet)
SCI_STYLEGETCHARACTERSET(int styleNumber)
You can set a style to use a different character set than the default. The places where such characters sets are likely to be useful are comments and literal strings. For example, SCI_STYLESETCHARACTERSET(SCE_C_STRING, SC_CHARSET_RUSSIAN) would ensure that strings in Russian would display correctly in C and C++ (SCE_C_STRING is the style number used by the C and C++ lexer to display literal strings; it has the value 6). This feature works differently on Windows and GTK+.

The character sets supported on Windows are:
SC_CHARSET_ANSI, SC_CHARSET_ARABIC, SC_CHARSET_BALTIC, SC_CHARSET_CHINESEBIG5, SC_CHARSET_DEFAULT, SC_CHARSET_EASTEUROPE, SC_CHARSET_GB2312, SC_CHARSET_GREEK, SC_CHARSET_HANGUL, SC_CHARSET_HEBREW, SC_CHARSET_JOHAB, SC_CHARSET_MAC, SC_CHARSET_OEM, SC_CHARSET_RUSSIAN (code page 1251), SC_CHARSET_SHIFTJIS, SC_CHARSET_SYMBOL, SC_CHARSET_THAI, SC_CHARSET_TURKISH, and SC_CHARSET_VIETNAMESE.

The character sets supported on GTK+ are:
SC_CHARSET_ANSI, SC_CHARSET_CYRILLIC (code page 1251), SC_CHARSET_EASTEUROPE, SC_CHARSET_GB2312, SC_CHARSET_HANGUL, SC_CHARSET_RUSSIAN (KOI8-R), SC_CHARSET_SHIFTJIS, and SC_CHARSET_8859_15.

SCI_STYLESETCASE(int styleNumber, int caseMode)
SCI_STYLEGETCASE(int styleNumber)
The value of caseMode determines how text is displayed. You can set upper case (SC_CASE_UPPER, 1) or lower case (SC_CASE_LOWER, 2) or display normally (SC_CASE_MIXED, 0). This does not change the stored text, only how it is displayed.

SCI_STYLESETVISIBLE(int styleNumber, bool visible)
SCI_STYLEGETVISIBLE(int styleNumber)
Text is normally visible. However, you can completely hide it by giving it a style with the visible set to 0. This could be used to hide embedded formatting instructions or hypertext keywords in HTML or XML.

SCI_STYLESETCHANGEABLE(int styleNumber, bool changeable)
SCI_STYLEGETCHANGEABLE(int styleNumber)
This is an experimental and incompletely implemented style attribute. The default setting is changeable set true but when set false it makes text read-only. Currently it only stops the caret from being within not-changeable text and does not yet stop deleting a range that contains not-changeable text.

SCI_STYLESETHOTSPOT(int styleNumber, bool hotspot)
SCI_STYLEGETHOTSPOT(int styleNumber)
This style is used to mark ranges of text that can detect mouse clicks. The cursor changes to a hand over hotspots, and the foreground, and background colours may change and an underline appear to indicate that these areas are sensitive to clicking. This may be used to allow hyperlinks to other documents.

Caret, selection, and hotspot styles

The selection is shown by changing the foreground and/or background colours. If one of these is not set then that attribute is not changed for the selection. The default is to show the selection by changing the background to light gray and leaving the foreground the same as when it was not selected. When there is no selection, the current insertion point is marked by the text caret. This is a vertical line that is normally blinking on and off to attract the users attention.

SCI_SETSELFORE(bool useSelectionForeColour, int colour)
SCI_SETSELBACK(bool useSelectionBackColour, int colour)
SCI_SETSELALPHA(int alpha)
SCI_GETSELALPHA
SCI_SETSELEOLFILLED(bool filled)
SCI_GETSELEOLFILLED
SCI_SETCARETFORE(int colour)
SCI_GETCARETFORE
SCI_SETCARETLINEVISIBLE(bool show)
SCI_GETCARETLINEVISIBLE
SCI_SETCARETLINEBACK(int colour)
SCI_GETCARETLINEBACK
SCI_SETCARETLINEBACKALPHA(int alpha)
SCI_GETCARETLINEBACKALPHA
SCI_SETCARETLINEVISIBLEALWAYS(bool alwaysVisible)
SCI_GETCARETLINEVISIBLEALWAYS
SCI_SETCARETPERIOD(int milliseconds)
SCI_GETCARETPERIOD
SCI_SETCARETSTYLE(int style)
SCI_GETCARETSTYLE
SCI_SETCARETWIDTH(int pixels)
SCI_GETCARETWIDTH
SCI_SETHOTSPOTACTIVEFORE(bool useSetting, int colour)
SCI_GETHOTSPOTACTIVEFORE
SCI_SETHOTSPOTACTIVEBACK(bool useSetting, int colour)
SCI_GETHOTSPOTACTIVEBACK
SCI_SETHOTSPOTACTIVEUNDERLINE(bool underline)
SCI_GETHOTSPOTACTIVEUNDERLINE
SCI_SETHOTSPOTSINGLELINE(bool singleLine)
SCI_GETHOTSPOTSINGLELINE
SCI_SETCONTROLCHARSYMBOL(int symbol)
SCI_GETCONTROLCHARSYMBOL
SCI_SETCARETSTICKY(int useCaretStickyBehaviour)
SCI_GETCARETSTICKY
SCI_TOGGLECARETSTICKY

SCI_SETSELFORE(bool useSelectionForeColour, int colour)
SCI_SETSELBACK(bool useSelectionBackColour, int colour)
You can choose to override the default selection colouring with these two messages. The colour you provide is used if you set useSelection*Colour to true. If it is set to false, the default styled colouring is used and the colour argument has no effect.

SCI_SETSELALPHA(int alpha)
SCI_GETSELALPHA
The selection can be drawn translucently in the selection background colour by setting an alpha value.

SCI_SETSELEOLFILLED(bool filled)
SCI_GETSELEOLFILLED
The selection can be drawn up to the right hand border by setting this property.

SCI_SETCARETFORE(int colour)
SCI_GETCARETFORE
The colour of the caret can be set with SCI_SETCARETFORE and retrieved with SCI_GETCARETFORE.

SCI_SETCARETLINEVISIBLE(bool show)
SCI_GETCARETLINEVISIBLE
SCI_SETCARETLINEBACK(int colour)
SCI_GETCARETLINEBACK
SCI_SETCARETLINEBACKALPHA(int alpha)
SCI_GETCARETLINEBACKALPHA
You can choose to make the background colour of the line containing the caret different with these messages. To do this, set the desired background colour with SCI_SETCARETLINEBACK, then use SCI_SETCARETLINEVISIBLE(true) to enable the effect. You can cancel the effect with SCI_SETCARETLINEVISIBLE(false). The two SCI_GETCARET* functions return the state and the colour. This form of background colouring has highest priority when a line has markers that would otherwise change the background colour. The caret line may also be drawn translucently which allows other background colours to show through. This is done by setting the alpha (translucency) value by calling SCI_SETCARETLINEBACKALPHA. When the alpha is not SC_ALPHA_NOALPHA, the caret line is drawn after all other features so will affect the colour of all other features.

SCI_SETCARETLINEVISIBLEALWAYS(bool alwaysVisible)
SCI_GETCARETLINEVISIBLEALWAYS
Choose to make the caret line always visible even when the window is not in focus. Default behaviour SCI_SETCARETLINEVISIBLEALWAYS(false) the caret line is only visible when the window is in focus.

SCI_SETCARETPERIOD(int milliseconds)
SCI_GETCARETPERIOD
The rate at which the caret blinks can be set with SCI_SETCARETPERIOD which determines the time in milliseconds that the caret is visible or invisible before changing state. Setting the period to 0 stops the caret blinking. The default value is 500 milliseconds. SCI_GETCARETPERIOD returns the current setting.

SCI_SETCARETSTYLE(int style)
SCI_GETCARETSTYLE
The style of the caret can be set with SCI_SETCARETSTYLE to be a line caret (CARETSTYLE_LINE=1), a block caret (CARETSTYLE_BLOCK=2) or to not draw at all (CARETSTYLE_INVISIBLE=0). The default value is the line caret (CARETSTYLE_LINE=1). You can determine the current caret style setting using SCI_GETCARETSTYLE.

The block character draws most combining and multibyte character sequences successfully, though some fonts like Thai Fonts (and possibly others) can sometimes appear strange when the cursor is positioned at these characters, which may result in only drawing a part of the cursor character sequence. This is most notable on Windows platforms.

SCI_SETCARETWIDTH(int pixels)
SCI_GETCARETWIDTH
The width of the line caret can be set with SCI_SETCARETWIDTH to a value of 0, 1, 2 or 3 pixels. The default width is 1 pixel. You can read back the current width with SCI_GETCARETWIDTH. A width of 0 makes the caret invisible (added at version 1.50), similar to setting the caret style to CARETSTYLE_INVISIBLE (though not interchangable). This setting only affects the width of the cursor when the cursor style is set to line caret mode, it does not affect the width for a block caret.

SCI_SETHOTSPOTACTIVEFORE(bool useHotSpotForeColour, int colour)
SCI_GETHOTSPOTACTIVEFORE
SCI_SETHOTSPOTACTIVEBACK(bool useHotSpotBackColour, int colour)
SCI_GETHOTSPOTACTIVEBACK
SCI_SETHOTSPOTACTIVEUNDERLINE(bool underline)
SCI_GETHOTSPOTACTIVEUNDERLINE
SCI_SETHOTSPOTSINGLELINE(bool singleLine)
SCI_GETHOTSPOTSINGLELINE
While the cursor hovers over text in a style with the hotspot attribute set, the default colouring can be modified and an underline drawn with these settings. Single line mode stops a hotspot from wrapping onto next line.

SCI_SETCONTROLCHARSYMBOL(int symbol)
SCI_GETCONTROLCHARSYMBOL
By default, Scintilla displays control characters (characters with codes less than 32) in a rounded rectangle as ASCII mnemonics: "NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL", "BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI", "DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB", "CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US". These mnemonics come from the early days of signaling, though some are still used (LF = Line Feed, BS = Back Space, CR = Carriage Return, for example).

You can choose to replace these mnemonics by a nominated symbol with an ASCII code in the range 32 to 255. If you set a symbol value less than 32, all control characters are displayed as mnemonics. The symbol you set is rendered in the font of the style set for the character. You can read back the current symbol with the SCI_GETCONTROLCHARSYMBOL message. The default symbol value is 0.

SCI_SETCARETSTICKY(int useCaretStickyBehaviour)
SCI_GETCARETSTICKY
SCI_TOGGLECARETSTICKY
These messages set, get or toggle the caretSticky setting which controls when the last position of the caret on the line is saved.

When set to SC_CARETSTICKY_OFF (0), the sticky flag is off; all text changes (and all caret position changes) will remember the caret's new horizontal position when moving to different lines. This is the default.

When set to SC_CARETSTICKY_ON (1), the sticky flag is on, and the only thing which will cause the editor to remember the horizontal caret position is moving the caret with mouse or keyboard (left/right arrow keys, home/end keys, etc).

When set to SC_CARETSTICKY_WHITESPACE (2), the caret acts like mode 0 (sticky off) except under one special case; when space or tab characters are inserted. (Including pasting only space/tabs -- undo, redo, etc. do not exhibit this behavior..).

SCI_TOGGLECARETSTICKY switches from SC_CARETSTICKY_ON and SC_CARETSTICKY_WHITESPACE to SC_CARETSTICKY_OFF and from SC_CARETSTICKY_OFF to SC_CARETSTICKY_ON.

Margins

There may be up to five margins, numbered 0 to SC_MAX_MARGIN (4) to the left of the text display, plus a gap either side of the text. Each margin can be set to display only symbols, line numbers, or text with SCI_SETMARGINTYPEN. Textual margins may also display symbols. The markers that can be displayed in each margin are set with SCI_SETMARGINMASKN. Any markers not associated with a visible margin will be displayed as changes in background colour in the text. A width in pixels can be set for each margin. Margins with a zero width are ignored completely. You can choose if a mouse click in a margin sends a SCN_MARGINCLICK notification to the container or selects a line of text.

The margins are numbered 0 to 4. Using a margin number outside the valid range has no effect. By default, margin 0 is set to display line numbers, but is given a width of 0, so it is hidden. Margin 1 is set to display non-folding symbols and is given a width of 16 pixels, so it is visible. Margin 2 is set to display the folding symbols, but is given a width of 0, so it is hidden. Of course, you can set the margins to be whatever you wish.

Styled text margins used to show revision and blame information:

Styled text margins used to show revision and blame information

SCI_SETMARGINTYPEN(int margin, int type)
SCI_GETMARGINTYPEN(int margin)
SCI_SETMARGINWIDTHN(int margin, int pixelWidth)
SCI_GETMARGINWIDTHN(int margin)
SCI_SETMARGINMASKN(int margin, int mask)
SCI_GETMARGINMASKN(int margin)
SCI_SETMARGINSENSITIVEN(int margin, bool sensitive)
SCI_GETMARGINSENSITIVEN(int margin)
SCI_SETMARGINCURSORN(int margin, int cursor)
SCI_GETMARGINCURSORN(int margin)
SCI_SETMARGINLEFT(<unused>, int pixels)
SCI_GETMARGINLEFT
SCI_SETMARGINRIGHT(<unused>, int pixels)
SCI_GETMARGINRIGHT
SCI_SETFOLDMARGINCOLOUR(bool useSetting, int colour)
SCI_SETFOLDMARGINHICOLOUR(bool useSetting, int colour)
SCI_MARGINSETTEXT(int line, char *text)
SCI_MARGINGETTEXT(int line, char *text)
SCI_MARGINSETSTYLE(int line, int style)
SCI_MARGINGETSTYLE(int line)
SCI_MARGINSETSTYLES(int line, char *styles)
SCI_MARGINGETSTYLES(int line, char *styles)
SCI_MARGINTEXTCLEARALL
SCI_MARGINSETSTYLEOFFSET(int style)
SCI_MARGINGETSTYLEOFFSET
SCI_SETMARGINOPTIONS(int marginOptions)
SCI_GETMARGINOPTIONS

SCI_SETMARGINTYPEN(int margin, int iType)
SCI_GETMARGINTYPEN(int margin)
These two routines set and get the type of a margin. The margin argument should be 0, 1, 2, 3 or 4. You can use the predefined constants SC_MARGIN_SYMBOL (0) and SC_MARGIN_NUMBER (1) to set a margin as either a line number or a symbol margin. A margin with application defined text may use SC_MARGIN_TEXT (4) or SC_MARGIN_RTEXT (5) to right justify the text. By convention, margin 0 is used for line numbers and the next two are used for symbols. You can also use the constants SC_MARGIN_BACK (2) and SC_MARGIN_FORE (3) for symbol margins that set their background colour to match the STYLE_DEFAULT background and foreground colours.

SCI_SETMARGINWIDTHN(int margin, int pixelWidth)
SCI_GETMARGINWIDTHN(int margin)
These routines set and get the width of a margin in pixels. A margin with zero width is invisible. By default, Scintilla sets margin 1 for symbols with a width of 16 pixels, so this is a reasonable guess if you are not sure what would be appropriate. Line number margins widths should take into account the number of lines in the document and the line number style. You could use something like SCI_TEXTWIDTH(STYLE_LINENUMBER, "_99999") to get a suitable width.

SCI_SETMARGINMASKN(int margin, int mask)
SCI_GETMARGINMASKN(int margin)
The mask is a 32-bit value. Each bit corresponds to one of 32 logical symbols that can be displayed in a margin that is enabled for symbols. There is a useful constant, SC_MASK_FOLDERS (0xFE000000 or -33554432), that is a mask for the 7 logical symbols used to denote folding. You can assign a wide range of symbols and colours to each of the 32 logical symbols, see Markers for more information. If (mask & SC_MASK_FOLDERS)==0, the margin background colour is controlled by style 33 (STYLE_LINENUMBER).

You add logical markers to a line with SCI_MARKERADD. If a line has an associated marker that does not appear in the mask of any margin with a non-zero width, the marker changes the background colour of the line. For example, suppose you decide to use logical marker 10 to mark lines with a syntax error and you want to show such lines by changing the background colour. The mask for this marker is 1 shifted left 10 times (1<<10) which is 0x400. If you make sure that no symbol margin includes 0x400 in its mask, any line with the marker gets the background colour changed.

To set a non-folding margin 1 use SCI_SETMARGINMASKN(1, ~SC_MASK_FOLDERS) which is the default set by Scintilla. To set a folding margin 2 use SCI_SETMARGINMASKN(2, SC_MASK_FOLDERS). ~SC_MASK_FOLDERS is 0x1FFFFFF in hexadecimal or 33554431 decimal. Of course, you may need to display all 32 symbols in a margin, in which case use SCI_SETMARGINMASKN(margin, -1).

SCI_SETMARGINSENSITIVEN(int margin, bool sensitive)
SCI_GETMARGINSENSITIVEN(int margin)
Each of the five margins can be set sensitive or insensitive to mouse clicks. A click in a sensitive margin sends a SCN_MARGINCLICK notification to the container. Margins that are not sensitive act as selection margins which make it easy to select ranges of lines. By default, all margins are insensitive.

SCI_SETMARGINCURSORN(int margin, int cursor)
SCI_GETMARGINCURSORN(int margin)
A reversed arrow cursor is normally shown over all margins. This may be changed to a normal arrow with SCI_SETMARGINCURSORN(margin, SC_CURSORARROW) or restored to a reversed arrow with SCI_SETMARGINCURSORN(margin, SC_CURSORREVERSEARROW).

SCI_SETMARGINLEFT(<unused>, int pixels)
SCI_GETMARGINLEFT
SCI_SETMARGINRIGHT(<unused>, int pixels)
SCI_GETMARGINRIGHT
These messages set and get the width of the blank margin on both sides of the text in pixels. The default is to one pixel on each side.

SCI_SETFOLDMARGINCOLOUR(bool useSetting, int colour)
SCI_SETFOLDMARGINHICOLOUR(bool useSetting, int colour)
These messages allow changing the colour of the fold margin and fold margin highlight. On Windows the fold margin colour defaults to ::GetSysColor(COLOR_3DFACE) and the fold margin highlight colour to ::GetSysColor(COLOR_3DHIGHLIGHT).

SCI_MARGINSETTEXT(int line, char *text)
SCI_MARGINGETTEXT(int line, char *text)
SCI_MARGINSETSTYLE(int line, int style)
SCI_MARGINGETSTYLE(int line)
SCI_MARGINSETSTYLES(int line, char *styles)
SCI_MARGINGETSTYLES(int line, char *styles)
SCI_MARGINTEXTCLEARALL
Text margins are created with the type SC_MARGIN_TEXT or SC_MARGIN_RTEXT. A different string may be set for each line with SCI_MARGINSETTEXT. The whole of the text margin on a line may be displayed in a particular style with SCI_MARGINSETSTYLE or each character may be individually styled with SCI_MARGINSETSTYLES which uses an array of bytes with each byte setting the style of the corresponding text byte similar to SCI_SETSTYLINGEX. Setting a text margin will cause a SC_MOD_CHANGEMARGIN notification to be sent.

Only some style attributes are active in text margins: font, size/sizeFractional, bold/weight, italics, fore, back, and characterSet.

SCI_MARGINSETSTYLEOFFSET(int style)
SCI_MARGINGETSTYLEOFFSET
Margin styles may be completely separated from standard text styles by setting a style offset. For example, SCI_MARGINSETSTYLEOFFSET(256) would allow the margin styles to be numbered from 256 upto 511 so they do not overlap styles set by lexers. Each style number set with SCI_MARGINSETSTYLE or SCI_MARGINSETSTYLES has the offset added before looking up the style.

Always call SCI_ALLOCATEEXTENDEDSTYLES before SCI_MARGINSETSTYLEOFFSET and use the result as the argument to SCI_MARGINSETSTYLEOFFSET.

SCI_SETMARGINOPTIONS(int marginOptions)
SCI_GETMARGINOPTIONS
Define margin options by enabling appropriate bit flags. At the moment, only one flag is available SC_MARGINOPTION_SUBLINESELECT=1, which controls how wrapped lines are selected when clicking on margin in front of them. If SC_MARGINOPTION_SUBLINESELECT is set only sub line of wrapped line is selected, otherwise whole wrapped line is selected. Margin options are set to SC_MARGINOPTION_NONE=0 by default.

Annotations

Annotations are read-only lines of text underneath each line of editable text. An annotation may consist of multiple lines separated by '\n'. Annotations can be used to display an assembler version of code for debugging or to show diagnostic messages inline or to line up different versions of text in a merge tool.

Annotations count as display lines for the methods SCI_VISIBLEFROMDOCLINE and SCI_DOCLINEFROMVISIBLE

Annotations used for inline diagnostics:

Annotations used for inline diagnostics

SCI_ANNOTATIONSETTEXT(int line, char *text)
SCI_ANNOTATIONGETTEXT(int line, char *text)
SCI_ANNOTATIONSETSTYLE(int line, int style)
SCI_ANNOTATIONGETSTYLE(int line)
SCI_ANNOTATIONSETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETLINES(int line)
SCI_ANNOTATIONCLEARALL
SCI_ANNOTATIONSETVISIBLE(int visible)
SCI_ANNOTATIONGETVISIBLE
SCI_ANNOTATIONSETSTYLEOFFSET(int style)
SCI_ANNOTATIONGETSTYLEOFFSET

SCI_ANNOTATIONSETTEXT(int line, char *text)
SCI_ANNOTATIONGETTEXT(int line, char *text)
SCI_ANNOTATIONSETSTYLE(int line, int style)
SCI_ANNOTATIONGETSTYLE(int line)
SCI_ANNOTATIONSETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETLINES(int line)
SCI_ANNOTATIONCLEARALL
A different string may be set for each line with SCI_ANNOTATIONSETTEXT. To clear annotations call SCI_ANNOTATIONSETTEXT with a NULL pointer. The whole of the text ANNOTATION on a line may be displayed in a particular style with SCI_ANNOTATIONSETSTYLE or each character may be individually styled with SCI_ANNOTATIONSETSTYLES which uses an array of bytes with each byte setting the style of the corresponding text byte similar to SCI_SETSTYLINGEX. The text must be set first as it specifies how long the annotation is so how many bytes of styling to read. Setting an annotation will cause a SC_MOD_CHANGEANNOTATION notification to be sent.

The number of lines annotating a line can be retrieved with SCI_ANNOTATIONGETLINES. All the lines can be cleared of annotations with SCI_ANNOTATIONCLEARALL which is equivalent to clearing each line (setting to 0) and then deleting other memory used for this feature.

Only some style attributes are active in annotations: font, size/sizeFractional, bold/weight, italics, fore, back, and characterSet.

SCI_ANNOTATIONSETVISIBLE(int visible)
SCI_ANNOTATIONGETVISIBLE
Annotations can be made visible in a view and there is a choice of display style when visible. The two messages set and get the annotation display mode. The visible argument can be one of:

ANNOTATION_HIDDEN 0 Annotations are not displayed.
ANNOTATION_STANDARD 1 Annotations are drawn left justified with no adornment.
ANNOTATION_BOXED 2 Annotations are indented to match the text and are surrounded by a box.

SCI_ANNOTATIONSETSTYLEOFFSET(int style)
SCI_ANNOTATIONGETSTYLEOFFSET
Annotation styles may be completely separated from standard text styles by setting a style offset. For example, SCI_ANNOTATIONSETSTYLEOFFSET(512) would allow the annotation styles to be numbered from 512 upto 767 so they do not overlap styles set by lexers (or margins if margins offset is 256). Each style number set with SCI_ANNOTATIONSETSTYLE or SCI_ANNOTATIONSETSTYLES has the offset added before looking up the style.

Always call SCI_ALLOCATEEXTENDEDSTYLES before SCI_ANNOTATIONSETSTYLEOFFSET and use the result as the argument to SCI_ANNOTATIONSETSTYLEOFFSET.

Other settings

SCI_SETUSEPALETTE(bool allowPaletteUse)
SCI_GETUSEPALETTE
SCI_SETBUFFEREDDRAW(bool isBuffered)
SCI_GETBUFFEREDDRAW
SCI_SETTWOPHASEDRAW(bool twoPhase)
SCI_GETTWOPHASEDRAW
SCI_SETTECHNOLOGY(int technology)
SCI_GETTECHNOLOGY
SCI_SETFONTQUALITY(int fontQuality)
SCI_GETFONTQUALITY
SCI_SETCODEPAGE(int codePage)
SCI_GETCODEPAGE
SCI_SETKEYSUNICODE(bool keysUnicode)
SCI_GETKEYSUNICODE
SCI_SETWORDCHARS(<unused>, const char *characters)
SCI_GETWORDCHARS(<unused>, char *characters)
SCI_SETWHITESPACECHARS(<unused>, const char *characters)
SCI_GETWHITESPACECHARS(<unused>, char *characters)
SCI_SETPUNCTUATIONCHARS(<unused>, const char *characters)
SCI_GETPUNCTUATIONCHARS(<unused>, char *characters)
SCI_SETCHARSDEFAULT
SCI_GRABFOCUS
SCI_SETFOCUS(bool focus)
SCI_GETFOCUS

To forward a message (WM_XXXX, WPARAM, LPARAM) to Scintilla, you can use SendMessage(hScintilla, WM_XXXX, WPARAM, LPARAM) where hScintilla is the handle to the Scintilla window you created as your editor.

While we are on the subject of forwarding messages in Windows, the top level window should forward any WM_SETTINGCHANGE messages to Scintilla (this is currently used to collect changes to mouse settings, but could be used for other user interface items in the future).

SCI_SETBUFFEREDDRAW(bool isBuffered)
SCI_GETBUFFEREDDRAW
These messages turn buffered drawing on or off and report the buffered drawing state. Buffered drawing draws each line into a bitmap rather than directly to the screen and then copies the bitmap to the screen. This avoids flickering although it does take longer. The default is for drawing to be buffered.

SCI_SETTWOPHASEDRAW(bool twoPhase)
SCI_GETTWOPHASEDRAW
Two phase drawing is a better but slower way of drawing text. In single phase drawing each run of characters in one style is drawn along with its background. If a character overhangs the end of a run, such as in "V_" where the "V" is in a different style from the "_", then this can cause the right hand side of the "V" to be overdrawn by the background of the "_" which cuts it off. Two phase drawing fixes this by drawing all the backgrounds first and then drawing the text in transparent mode. Two phase drawing may flicker more than single phase unless buffered drawing is on. The default is for drawing to be two phase.

SCI_SETTECHNOLOGY(int technology)
SCI_GETTECHNOLOGY
The technology property allows choosing between different drawing APIs and options. On most platforms, the only choice is SC_TECHNOLOGY_DEFAULT (0). On Windows Vista or later, SC_TECHNOLOGY_DIRECTWRITE (1) can be chosen to use the Direct2D and DirectWrite APIs for higher quality antialiased drawing. Since Direct2D buffers drawing, Scintilla's buffering can be turned off with SCI_SETBUFFEREDDRAW(0).

SCI_SETFONTQUALITY(int fontQuality)
SCI_GETFONTQUALITY
Manage font quality (antialiasing method). Currently, the following values are available on Windows: SC_EFF_QUALITY_DEFAULT (backward compatible), SC_EFF_QUALITY_NON_ANTIALIASED, SC_EFF_QUALITY_ANTIALIASED, SC_EFF_QUALITY_LCD_OPTIMIZED.

In case it is necessary to squeeze more options into this property, only a limited number of bits defined by SC_EFF_QUALITY_MASK (0xf) will be used for quality.

SCI_SETCODEPAGE(int codePage)
SCI_GETCODEPAGE
Scintilla has some support for Japanese, Chinese and Korean DBCS. Use this message with codePage set to the code page number to set Scintilla to use code page information to ensure double byte characters are treated as one character rather than two. This also stops the caret from moving between the two bytes in a double byte character. Do not use this message to choose between different single byte character sets: it doesn't do that. Call with codePage set to zero to disable DBCS support. The default is SCI_SETCODEPAGE(0).

Code page SC_CP_UTF8 (65001) sets Scintilla into Unicode mode with the document treated as a sequence of characters expressed in UTF-8. The text is converted to the platform's normal Unicode encoding before being drawn by the OS and thus can display Hebrew, Arabic, Cyrillic, and Han characters. Languages which can use two characters stacked vertically in one horizontal space, such as Thai, will mostly work but there are some issues where the characters are drawn separately leading to visual glitches. Bi-directional text is not supported.

Code page can be set to 932 (Japanese Shift-JIS), 936 (Simplified Chinese GBK), 949 (Korean Unified Hangul Code), 950 (Traditional Chinese Big5), or 1361 (Korean Johab) although these may require installation of language specific support.

SCI_SETKEYSUNICODE(bool keysUnicode)
SCI_GETKEYSUNICODE
On Windows, character keys are normally handled differently depending on whether Scintilla is a wide or narrow character window with character messages treated as Unicode when wide and as 8 bit otherwise. Set this property to always treat as Unicode. This option is needed for Delphi.

SCI_SETWORDCHARS(<unused>, const char *characters)
Scintilla has several functions that operate on words, which are defined to be contiguous sequences of characters from a particular set of characters. This message defines which characters are members of that set. The character sets are set to default values before processing this function. For example, if you don't allow '_' in your set of characters use:
SCI_SETWORDCHARS(0, "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789");

SCI_GETWORDCHARS(<unused>, char *characters)
This fills the characters parameter with all the characters included in words. The characters parameter must be large enough to hold all of the characters. If the characters parameter is 0 then the length that should be allocated to store the entire set is returned.

SCI_SETWHITESPACECHARS(<unused>, const char *characters)
SCI_GETWHITESPACECHARS(<unused>, char *characters)
Similar to SCI_SETWORDCHARS, this message allows the user to define which chars Scintilla considers as whitespace. Setting the whitespace chars allows the user to fine-tune Scintilla's behaviour doing such things as moving the cursor to the start or end of a word; for example, by defining punctuation chars as whitespace, they will be skipped over when the user presses ctrl+left or ctrl+right. This function should be called after SCI_SETWORDCHARS as it will reset the whitespace characters to the default set. SCI_GETWHITESPACECHARS behaves similarly to SCI_GETWORDCHARS.

SCI_SETPUNCTUATIONCHARS(<unused>, const char *characters)
SCI_GETPUNCTUATIONCHARS(<unused>, char *characters)
Similar to SCI_SETWORDCHARS and SCI_SETWHITESPACECHARS, this message allows the user to define which chars Scintilla considers as punctuation. SCI_GETPUNCTUATIONCHARS behaves similarly to SCI_GETWORDCHARS.

SCI_SETCHARSDEFAULT
Use the default sets of word and whitespace characters. This sets whitespace to space, tab and other characters with codes less than 0x20, with word characters set to alphanumeric and '_'.

SCI_GRABFOCUS
SCI_SETFOCUS(bool focus)
SCI_GETFOCUS
Scintilla can be told to grab the focus with this message. This is needed more on GTK+ where focus handling is more complicated than on Windows.

The internal focus flag can be set with SCI_SETFOCUS. This is used by clients that have complex focus requirements such as having their own window that gets the real focus but with the need to indicate that Scintilla has the logical focus.

Brace highlighting

SCI_BRACEHIGHLIGHT(int pos1, int pos2)
SCI_BRACEBADLIGHT(int pos1)
SCI_BRACEHIGHLIGHTINDICATOR(bool useBraceHighlightIndicator, int indicatorNumber)
SCI_BRACEBADLIGHTINDICATOR(bool useBraceBadLightIndicator, int indicatorNumber)
SCI_BRACEMATCH(int position, int maxReStyle)

SCI_BRACEHIGHLIGHT(int pos1, int pos2)
Up to two characters can be highlighted in a 'brace highlighting style', which is defined as style number STYLE_BRACELIGHT (34). If you have enabled indent guides, you may also wish to highlight the indent that corresponds with the brace. You can locate the column with SCI_GETCOLUMN and highlight the indent with SCI_SETHIGHLIGHTGUIDE.

SCI_BRACEBADLIGHT(int pos1)
If there is no matching brace then the brace badlighting style, style STYLE_BRACEBAD (35), can be used to show the brace that is unmatched. Using a position of INVALID_POSITION (-1) removes the highlight.

SCI_BRACEHIGHLIGHTINDICATOR(bool useBraceHighlightIndicator, int indicatorNumber)
Use specified indicator to highlight matching braces instead of changing their style.

SCI_BRACEBADLIGHTINDICATOR(bool useBraceBadLightIndicator, int indicatorNumber)
Use specified indicator to highlight non matching brace instead of changing its style.

SCI_BRACEMATCH(int pos, int maxReStyle)
The SCI_BRACEMATCH message finds a corresponding matching brace given pos, the position of one brace. The brace characters handled are '(', ')', '[', ']', '{', '}', '<', and '>'. The search is forwards from an opening brace and backwards from a closing brace. If the character at position is not a brace character, or a matching brace cannot be found, the return value is -1. Otherwise, the return value is the position of the matching brace.

A match only occurs if the style of the matching brace is the same as the starting brace or the matching brace is beyond the end of styling. Nested braces are handled correctly. The maxReStyle parameter must currently be 0 - it may be used in the future to limit the length of brace searches.

Tabs and Indentation Guides

Indentation (the white space at the start of a line) is often used by programmers to clarify program structure and in some languages, for example Python, it may be part of the language syntax. Tabs are normally used in editors to insert a tab character or to pad text with spaces up to the next tab.

Scintilla can be set to treat tab and backspace in the white space at the start of a line in a special way: inserting a tab indents the line to the next indent position rather than just inserting a tab at the current character position and backspace unindents the line rather than deleting a character. Scintilla can also display indentation guides (vertical lines) to help you to generate code.

SCI_SETTABWIDTH(int widthInChars)
SCI_GETTABWIDTH
SCI_SETUSETABS(bool useTabs)
SCI_GETUSETABS
SCI_SETINDENT(int widthInChars)
SCI_GETINDENT
SCI_SETTABINDENTS(bool tabIndents)
SCI_GETTABINDENTS
SCI_SETBACKSPACEUNINDENTS(bool bsUnIndents)
SCI_GETBACKSPACEUNINDENTS
SCI_SETLINEINDENTATION(int line, int indentation)
SCI_GETLINEINDENTATION(int line)
SCI_GETLINEINDENTPOSITION(int line)
SCI_SETINDENTATIONGUIDES(int indentView)
SCI_GETINDENTATIONGUIDES
SCI_SETHIGHLIGHTGUIDE(int column)
SCI_GETHIGHLIGHTGUIDE

SCI_SETTABWIDTH(int widthInChars)
SCI_GETTABWIDTH
SCI_SETTABWIDTH sets the size of a tab as a multiple of the size of a space character in STYLE_DEFAULT. The default tab width is 8 characters. There are no limits on tab sizes, but values less than 1 or large values may have undesirable effects.

SCI_SETUSETABS(bool useTabs)
SCI_GETUSETABS
SCI_SETUSETABS determines whether indentation should be created out of a mixture of tabs and spaces or be based purely on spaces. Set useTabs to false (0) to create all tabs and indents out of spaces. The default is true. You can use SCI_GETCOLUMN to get the column of a position taking the width of a tab into account.

SCI_SETINDENT(int widthInChars)
SCI_GETINDENT
SCI_SETINDENT sets the size of indentation in terms of the width of a space in STYLE_DEFAULT. If you set a width of 0, the indent size is the same as the tab size. There are no limits on indent sizes, but values less than 0 or large values may have undesirable effects.

SCI_SETTABINDENTS(bool tabIndents)
SCI_GETTABINDENTS
SCI_SETBACKSPACEUNINDENTS(bool bsUnIndents)
SCI_GETBACKSPACEUNINDENTS

Inside indentation white space, the tab and backspace keys can be made to indent and unindent rather than insert a tab character or delete a character with the SCI_SETTABINDENTS and SCI_SETBACKSPACEUNINDENTS functions.

SCI_SETLINEINDENTATION(int line, int indentation)
SCI_GETLINEINDENTATION(int line)
The amount of indentation on a line can be discovered and set with SCI_GETLINEINDENTATION and SCI_SETLINEINDENTATION. The indentation is measured in character columns, which correspond to the width of space characters.

SCI_GETLINEINDENTPOSITION(int line)
This returns the position at the end of indentation of a line.

SCI_SETINDENTATIONGUIDES(int indentView)
SCI_GETINDENTATIONGUIDES
Indentation guides are dotted vertical lines that appear within indentation white space every indent size columns. They make it easy to see which constructs line up especially when they extend over multiple pages. Style STYLE_INDENTGUIDE (37) is used to specify the foreground and background colour of the indentation guides.

There are 4 indentation guide views. SC_IV_NONE turns the feature off but the other 3 states determine how far the guides appear on empty lines.

SC_IV_NONE No indentation guides are shown.
SC_IV_REAL Indentation guides are shown inside real indentation white space.
SC_IV_LOOKFORWARD Indentation guides are shown beyond the actual indentation up to the level of the next non-empty line. If the previous non-empty line was a fold header then indentation guides are shown for one more level of indent than that line. This setting is good for Python.
SC_IV_LOOKBOTH Indentation guides are shown beyond the actual indentation up to the level of the next non-empty line or previous non-empty line whichever is the greater. This setting is good for most languages.

SCI_SETHIGHLIGHTGUIDE(int column)
SCI_GETHIGHLIGHTGUIDE
When brace highlighting occurs, the indentation guide corresponding to the braces may be highlighted with the brace highlighting style, STYLE_BRACELIGHT (34). Set column to 0 to cancel this highlight.

Markers

There are 32 markers, numbered 0 to MARKER_MAX (31), and you can assign any combination of them to each line in the document. Markers appear in the selection margin to the left of the text. If the selection margin is set to zero width, the background colour of the whole line is changed instead. Marker numbers 25 to 31 are used by Scintilla in folding margins, and have symbolic names of the form SC_MARKNUM_*, for example SC_MARKNUM_FOLDEROPEN.

Marker numbers 0 to 24 have no pre-defined function; you can use them to mark syntax errors or the current point of execution, break points, or whatever you need marking. If you do not need folding, you can use all 32 for any purpose you wish.

Each marker number has a symbol associated with it. You can also set the foreground and background colour for each marker number, so you can use the same symbol more than once with different colouring for different uses. Scintilla has a set of symbols you can assign (SC_MARK_*) or you can use characters. By default, all 32 markers are set to SC_MARK_CIRCLE with a black foreground and a white background.

The markers are drawn in the order of their numbers, so higher numbered markers appear on top of lower numbered ones. Markers try to move with their text by tracking where the start of their line moves. When a line is deleted, its markers are combined, by an OR operation, with the markers of the previous line.

SCI_MARKERDEFINE(int markerNumber, int markerSymbols)
SCI_MARKERDEFINEPIXMAP(int markerNumber, const char *xpm)
SCI_RGBAIMAGESETWIDTH(int width)
SCI_RGBAIMAGESETHEIGHT(int height)
SCI_RGBAIMAGESETSCALE(int scalePercent)
SCI_MARKERDEFINERGBAIMAGE(int markerNumber, const char *pixels)
SCI_MARKERSYMBOLDEFINED(int markerNumber)
SCI_MARKERSETFORE(int markerNumber, int colour)
SCI_MARKERSETBACK(int markerNumber, int colour)
SCI_MARKERSETBACKSELECTED(int markerNumber, int colour)
SCI_MARKERENABLEHIGHLIGHT(int enabled)
SCI_MARKERSETALPHA(int markerNumber, int alphHTTP/1.1 200 OK Connection: keep-alive Connection: keep-alive Content-Disposition: inline; filename="ScintillaDoc.html" Content-Disposition: inline; filename="ScintillaDoc.html" Content-Length: 408396 Content-Length: 408396 Content-Security-Policy: default-src 'none' Content-Security-Policy: default-src 'none' Content-Type: text/plain; charset=UTF-8 Content-Type: text/plain; charset=UTF-8 Date: Sun, 22 Feb 2026 15:31:44 UTC ETag: "19829cbd8aa5d65f5bbd3f85c922e2f741ae2c10" ETag: "19829cbd8aa5d65f5bbd3f85c922e2f741ae2c10" Expires: Wed, 20 Feb 2036 15:31:44 GMT Expires: Wed, 20 Feb 2036 15:31:44 GMT Last-Modified: Sun, 22 Feb 2026 15:31:44 GMT Last-Modified: Sun, 22 Feb 2026 15:31:44 GMT Server: OpenBSD httpd Server: OpenBSD httpd X-Content-Type-Options: nosniff X-Content-Type-Options: nosniff Scintilla Documentation
Scintilla icon Scintilla

Scintilla Documentation

Last edited 29/June/2013 NH

There is an overview of the internal design of Scintilla.
Some notes on using Scintilla.
How to use the Scintilla Edit Control on Windows.
A simple sample using Scintilla from C++ on Windows.
A simple sample using Scintilla from Visual Basic.
Bait is a tiny sample using Scintilla on GTK+.
A detailed description of how to write a lexer, including a discussion of folding.
How to implement a lexer in the container.
How to implement folding.
The coding style used in Scintilla and SciTE is worth following if you want to contribute code to Scintilla but is not compulsory.

Introduction

The Windows version of Scintilla is a Windows Control. As such, its primary programming interface is through Windows messages. Early versions of Scintilla emulated much of the API defined by the standard Windows Edit and RichEdit controls but those APIs are now deprecated in favour of Scintilla's own, more consistent API. In addition to messages performing the actions of a normal Edit control, Scintilla allows control of syntax styling, folding, markers, autocompletion and call tips.

The GTK+ version also uses messages in a similar way to the Windows version. This is different to normal GTK+ practice but made it easier to implement rapidly.

Scintilla does not properly support right-to-left languages like Arabic and Hebrew. While text in these languages may appear correct, it is not possible to interact with this text as is normal with other editing components.

This documentation describes the individual messages and notifications used by Scintilla. It does not describe how to link them together to form a useful editor. For now, the best way to work out how to develop using Scintilla is to see how SciTE uses it. SciTE exercises most of Scintilla's facilities.

In the descriptions that follow, the messages are described as function calls with zero, one or two arguments. These two arguments are the standard wParam and lParam familiar to Windows programmers. These parameters are integers that are large enough to hold pointers, and the return value is also an integer large enough to contain a pointer. Although the commands only use the arguments described, because all messages have two arguments whether Scintilla uses them or not, it is strongly recommended that any unused arguments are set to 0. This allows future enhancement of messages without the risk of breaking existing code. Common argument types are:

bool Arguments expect the values 0 for false and 1 for true.
int Arguments are 32-bit signed integers.
const char * Arguments point at text that is being passed to Scintilla but not modified. The text may be zero terminated or another argument may specify the character count, the description will make this clear.
char * Arguments point at text buffers that Scintilla will fill with text. In some cases, another argument will tell Scintilla the buffer size. In others, you must make sure that the buffer is big enough to hold the requested text. If a NULL pointer (0) is passed then, for SCI_* calls, the length that should be allocated is returned.
colour Colours are set using the RGB format (Red, Green, Blue). The intensity of each colour is set in the range 0 to 255. If you have three such intensities, they are combined as: red | (green << 8) | (blue << 16). If you set all intensities to 255, the colour is white. If you set all intensities to 0, the colour is black. When you set a colour, you are making a request. What you will get depends on the capabilities of the system and the current screen mode.
alpha Translucency is set using an alpha value. Alpha ranges from 0 (SC_ALPHA_TRANSPARENT) which is completely transparent to 255 (SC_ALPHA_OPAQUE) which is opaque. The value 256 (SC_ALPHA_NOALPHA) is opaque and uses code that is not alpha-aware and may be faster. Not all platforms support translucency and only some Scintilla features implement translucency. The default alpha value for most features is SC_ALPHA_NOALPHA.
<unused> This is an unused argument. Setting it to 0 will ensure compatibility with future enhancements.

Contents

o Text retrieval and modification o Searching and replacing o Overtype
o Cut, copy and paste o Error handling o Undo and Redo
o Selection and information o Multiple Selection and Virtual Space o Scrolling and automatic scrolling
o White space o Cursor o Mouse capture
o Line endings o Styling o Style definition
o Caret, selection, and hotspot styles o Margins o Annotations
o Other settings o Brace highlighting o Tabs and Indentation Guides
o Markers o Indicators o Autocompletion
o User lists o Call tips o Keyboard commands
o Key bindings o Popup edit menu o Macro recording
o Printing o Direct access o Multiple views
o Background loading and saving o Folding o Line wrapping
o Zooming o Long lines o Lexer
o Lexer objects o Notifications o Images
o GTK+ o Provisional messages o Deprecated messages
o Edit messages never supported by Scintilla o Building Scintilla

Messages with names of the form SCI_SETxxxxx often have a companion SCI_GETxxxxx. To save tedious repetition, if the SCI_GETxxxxx message returns the value set by the SCI_SETxxxxx message, the SET routine is described and the GET routine is left to your imagination.

Text retrieval and modification

Each byte in a Scintilla document is followed by an associated byte of styling information. The combination of a character byte and a style byte is called a cell. Style bytes are interpreted an index into an array of styles. Style bytes may be split into an index and a set of indicator bits but this use is discouraged and indicators should now use SCI_INDICATORFILLRANGE and related calls. The default split is with the index in the low 5 bits and 3 high bits as indicators. This allows 32 fundamental styles, which is enough for most languages, and three independent indicators so that, for example, syntax errors, deprecated names and bad indentation could all be displayed at once. The number of bits used for styles can be altered with SCI_SETSTYLEBITS up to a maximum of 8 bits. The remaining bits can be used for indicators.

In this document, 'character' normally refers to a byte even when multi-byte characters are used. Lengths measure the numbers of bytes, not the amount of characters in those bytes.

Positions within the Scintilla document refer to a character or the gap before that character. The first character in a document is 0, the second 1 and so on. If a document contains nLen characters, the last character is numbered nLen-1. The caret exists between character positions and can be located from before the first character (0) to after the last character (nLen).

There are places where the caret can not go where two character bytes make up one character. This occurs when a DBCS character from a language like Japanese is included in the document or when line ends are marked with the CP/M standard of a carriage return followed by a line feed. The INVALID_POSITION constant (-1) represents an invalid position within the document.

All lines of text in Scintilla are the same height, and this height is calculated from the largest font in any current style. This restriction is for performance; if lines differed in height then calculations involving positioning of text would require the text to be styled first.

SCI_GETTEXT(int length, char *text)
SCI_SETTEXT(<unused>, const char *text)
SCI_SETSAVEPOINT
SCI_GETLINE(int line, char *text)
SCI_REPLACESEL(<unused>, const char *text)
SCI_SETREADONLY(bool readOnly)
SCI_GETREADONLY
SCI_GETTEXTRANGE(<unused>, Sci_TextRange *tr)
SCI_ALLOCATE(int bytes, <unused>)
SCI_ADDTEXT(int length, const char *s)
SCI_ADDSTYLEDTEXT(int length, cell *s)
SCI_APPENDTEXT(int length, const char *s)
SCI_INSERTTEXT(int pos, const char *text)
SCI_CLEARALL
SCI_DELETERANGE(int pos, int deleteLength)
SCI_CLEARDOCUMENTSTYLE
SCI_GETCHARAT(int position)
SCI_GETSTYLEAT(int position)
SCI_GETSTYLEDTEXT(<unused>, Sci_TextRange *tr)
SCI_SETSTYLEBITS(int bits)
SCI_GETSTYLEBITS
SCI_RELEASEALLEXTENDEDSTYLES
SCI_ALLOCATEEXTENDEDSTYLES(int numberStyles)
SCI_TARGETASUTF8(<unused>, char *s)
SCI_ENCODEDFROMUTF8(const char *utf8, char *encoded)
SCI_SETLENGTHFORENCODE(int bytes)

SCI_GETTEXT(int length, char *text)
This returns length-1 characters of text from the start of the document plus one terminating 0 character. To collect all the text in a document, use SCI_GETLENGTH to get the number of characters in the document (nLen), allocate a character buffer of length nLen+1 bytes, then call SCI_GETTEXT(nLen+1, char *text). If the text argument is 0 then the length that should be allocated to store the entire document is returned. If you then save the text, you should use SCI_SETSAVEPOINT to mark the text as unmodified.

See also: SCI_GETSELTEXT, SCI_GETCURLINE, SCI_GETLINE, SCI_GETSTYLEDTEXT, SCI_GETTEXTRANGE

SCI_SETTEXT(<unused>, const char *text)
This replaces all the text in the document with the zero terminated text string you pass in.

SCI_SETSAVEPOINT
This message tells Scintilla that the current state of the document is unmodified. This is usually done when the file is saved or loaded, hence the name "save point". As Scintilla performs undo and redo operations, it notifies the container that it has entered or left the save point with SCN_SAVEPOINTREACHED and SCN_SAVEPOINTLEFT notification messages, allowing the container to know if the file should be considered dirty or not.

See also: SCI_EMPTYUNDOBUFFER, SCI_GETMODIFY

SCI_GETLINE(int line, char *text)
This fills the buffer defined by text with the contents of the nominated line (lines start at 0). The buffer is not terminated by a 0 character. It is up to you to make sure that the buffer is long enough for the text, use SCI_LINELENGTH(int line). The returned value is the number of characters copied to the buffer. The returned text includes any end of line characters. If you ask for a line number outside the range of lines in the document, 0 characters are copied. If the text argument is 0 then the length that should be allocated to store the entire line is returned.

See also: SCI_GETCURLINE, SCI_GETSELTEXT, SCI_GETTEXTRANGE, SCI_GETSTYLEDTEXT, SCI_GETTEXT

SCI_REPLACESEL(<unused>, const char *text)
The currently selected text between the anchor and the current position is replaced by the 0 terminated text string. If the anchor and current position are the same, the text is inserted at the caret position. The caret is positioned after the inserted text and the caret is scrolled into view.

SCI_SETREADONLY(bool readOnly)
SCI_GETREADONLY
These messages set and get the read-only flag for the document. If you mark a document as read only, attempts to modify the text cause the SCN_MODIFYATTEMPTRO notification.

SCI_GETTEXTRANGE(<unused>, Sci_TextRange *tr)
This collects the text between the positions cpMin and cpMax and copies it to lpstrText (see struct Sci_TextRange in Scintilla.h). If cpMax is -1, text is returned to the end of the document. The text is 0 terminated, so you must supply a buffer that is at least 1 character longer than the number of characters you wish to read. The return value is the length of the returned text not including the terminating 0.

See also: SCI_GETSELTEXT, SCI_GETLINE, SCI_GETCURLINE, SCI_GETSTYLEDTEXT, SCI_GETTEXT

SCI_GETSTYLEDTEXT(<unused>, Sci_TextRange *tr)
This collects styled text into a buffer using two bytes for each cell, with the character at the lower address of each pair and the style byte at the upper address. Characters between the positions cpMin and cpMax are copied to lpstrText (see struct Sci_TextRange in Scintilla.h). Two 0 bytes are added to the end of the text, so the buffer that lpstrText points at must be at least 2*(cpMax-cpMin)+2 bytes long. No check is made for sensible values of cpMin or cpMax. Positions outside the document return character codes and style bytes of 0.

See also: SCI_GETSELTEXT, SCI_GETLINE, SCI_GETCURLINE, SCI_GETTEXTRANGE, SCI_GETTEXT

SCI_ALLOCATE(int bytes, <unused>)
Allocate a document buffer large enough to store a given number of bytes. The document will not be made smaller than its current contents.

SCI_ADDTEXT(int length, const char *s)
This inserts the first length characters from the string s at the current position. This will include any 0's in the string that you might have expected to stop the insert operation. The current position is set at the end of the inserted text, but it is not scrolled into view.

SCI_ADDSTYLEDTEXT(int length, cell *s)
This behaves just like SCI_ADDTEXT, but inserts styled text.

SCI_APPENDTEXT(int length, const char *s)
This adds the first length characters from the string s to the end of the document. This will include any 0's in the string that you might have expected to stop the operation. The current selection is not changed and the new text is not scrolled into view.

SCI_INSERTTEXT(int pos, const char *text)
This inserts the zero terminated text string at position pos or at the current position if pos is -1. If the current position is after the insertion point then it is moved along with its surrounding text but no scrolling is performed.

SCI_CLEARALL
Unless the document is read-only, this deletes all the text.

SCI_DELETERANGE(int pos, int deleteLength)
Deletes a range of text in the document.

SCI_CLEARDOCUMENTSTYLE
When wanting to completely restyle the document, for example after choosing a lexer, the SCI_CLEARDOCUMENTSTYLE can be used to clear all styling information and reset the folding state.

SCI_GETCHARAT(int pos)
This returns the character at pos in the document or 0 if pos is negative or past the end of the document.

SCI_GETSTYLEAT(int pos)
This returns the style at pos in the document, or 0 if pos is negative or past the end of the document.

SCI_SETSTYLEBITS(int bits)
SCI_GETSTYLEBITS
This pair of routines sets and reads back the number of bits in each cell to use for styling, to a maximum of 8 style bits. The remaining bits can be used as indicators. The standard setting is SCI_SETSTYLEBITS(5). The number of styling bits needed by the current lexer can be found with SCI_GETSTYLEBITSNEEDED.

SCI_RELEASEALLEXTENDEDSTYLES
SCI_ALLOCATEEXTENDEDSTYLES(int numberStyles)
Extended styles are used for features like textual margins and annotations as well as internally by Scintilla. They are outside the range 0..255 used for the styles bytes associated with document bytes. These functions manage the use of extended styles to ensures that components cooperate in defining styles. SCI_RELEASEALLEXTENDEDSTYLES releases any extended styles allocated by the container. SCI_ALLOCATEEXTENDEDSTYLES allocates a range of style numbers after the byte style values and returns the number of the first allocated style. Ranges for margin and annotation styles should be allocated before calling SCI_MARGINSETSTYLEOFFSET or SCI_ANNOTATIONSETSTYLEOFFSET.

Sci_TextRange and Sci_CharacterRange
These structures are defined to be exactly the same shape as the Win32 TEXTRANGE and CHARRANGE, so that older code that treats Scintilla as a RichEdit will work.

struct Sci_CharacterRange {
    long cpMin;
    long cpMax;
};

struct Sci_TextRange {
    struct Sci_CharacterRange chrg;
    char *lpstrText;
};

GTK+-specific: Access to encoded text

SCI_TARGETASUTF8(<unused>, char *s)
This method retrieves the value of the target encoded as UTF-8 which is the default encoding of GTK+ so is useful for retrieving text for use in other parts of the user interface, such as find and replace dialogs. The length of the encoded text in bytes is returned.

SCI_ENCODEDFROMUTF8(const char *utf8, char *encoded)
SCI_SETLENGTHFORENCODE(int bytes)
SCI_ENCODEDFROMUTF8 converts a UTF-8 string into the document's encoding which is useful for taking the results of a find dialog, for example, and receiving a string of bytes that can be searched for in the document. Since the text can contain nul bytes, the SCI_SETLENGTHFORENCODE method can be used to set the length that will be converted. If set to -1, the length is determined by finding a nul byte. The length of the converted string is returned.

Searching

There are methods to search for text and for regular expressions. The regular expression support is limited and should only be used for simple cases and initial development. A different regular expression library can be integrated into Scintilla or can be called from the container using direct access to the buffer contents through SCI_GETCHARACTERPOINTER.

SCI_FINDTEXT(int flags, Sci_TextToFind *ttf)
SCI_SEARCHANCHOR
SCI_SEARCHNEXT(int searchFlags, const char *text)
SCI_SEARCHPREV(int searchFlags, const char *text)
Search and replace using the target

searchFlags
Several of the search routines use flag options, which include a simple regular expression search. Combine the flag options by adding them:

SCFIND_MATCHCASE A match only occurs with text that matches the case of the search string.
SCFIND_WHOLEWORD A match only occurs if the characters before and after are not word characters.
SCFIND_WORDSTART A match only occurs if the character before is not a word character.
SCFIND_REGEXP The search string should be interpreted as a regular expression.
SCFIND_POSIX Treat regular expression in a more POSIX compatible manner by interpreting bare ( and ) for tagged sections rather than \( and \).

You can search backwards to find the previous occurrence of a search string by setting the end of the search range before the start.

In a regular expression, special characters interpreted are:

. Matches any character
\( This marks the start of a region for tagging a match.
\) This marks the end of a tagged region.
\n Where n is 1 through 9 refers to the first through ninth tagged region when replacing. For example, if the search string was Fred\([1-9]\)XXX and the replace string was Sam\1YYY, when applied to Fred2XXX this would generate Sam2YYY. \0 refers to all of the matching text.
\< This matches the start of a word using Scintilla's definitions of words.
\> This matches the end of a word using Scintilla's definition of words.
\x This allows you to use a character x that would otherwise have a special meaning. For example, \[ would be interpreted as [ and not as the start of a character set.
[...] This indicates a set of characters, for example, [abc] means any of the characters a, b or c. You can also use ranges, for example [a-z] for any lower case character.
[^...] The complement of the characters in the set. For example, [^A-Za-z] means any character except an alphabetic character.
^ This matches the start of a line (unless used inside a set, see above).
$ This matches the end of a line.
* This matches 0 or more times. For example, Sa*m matches Sm, Sam, Saam, Saaam and so on.
+ This matches 1 or more times. For example, Sa+m matches Sam, Saam, Saaam and so on.

Regular expressions will only match ranges within a single line, never matching over multiple lines.

SCI_FINDTEXT(int searchFlags, Sci_TextToFind *ttf)
This message searches for text in the document. It does not use or move the current selection. The searchFlags argument controls the search type, which includes regular expression searches.

The Sci_TextToFind structure is defined in Scintilla.h; set chrg.cpMin and chrg.cpMax with the range of positions in the document to search. You can search backwards by setting chrg.cpMax less than chrg.cpMin. Set the lpstrText member of Sci_TextToFind to point at a zero terminated text string holding the search pattern. If your language makes the use of Sci_TextToFind difficult, you should consider using SCI_SEARCHINTARGET instead.

The return value is -1 if the search fails or the position of the start of the found text if it succeeds. The chrgText.cpMin and chrgText.cpMax members of Sci_TextToFind are filled in with the start and end positions of the found text.

See also: SCI_SEARCHINTARGET

Sci_TextToFind
This structure is defined to have exactly the same shape as the Win32 structure FINDTEXTEX for old code that treated Scintilla as a RichEdit control.

struct Sci_TextToFind {
    struct Sci_CharacterRange chrg;     // range to search
    char *lpstrText;                // the search pattern (zero terminated)
    struct Sci_CharacterRange chrgText; // returned as position of matching text
};

SCI_SEARCHANCHOR
SCI_SEARCHNEXT(int searchFlags, const char *text)
SCI_SEARCHPREV(int searchFlags, const char *text)
These messages provide relocatable search support. This allows multiple incremental interactive searches to be macro recorded while still setting the selection to found text so the find/select operation is self-contained. These three messages send SCN_MACRORECORD notifications if macro recording is enabled.

SCI_SEARCHANCHOR sets the search start point used by SCI_SEARCHNEXT and SCI_SEARCHPREV to the start of the current selection, that is, the end of the selection that is nearer to the start of the document. You should always call this before calling either of SCI_SEARCHNEXT or SCI_SEARCHPREV.

SCI_SEARCHNEXT and SCI_SEARCHPREV search for the next and previous occurrence of the zero terminated search string pointed at by text. The search is modified by the searchFlags.

The return value is -1 if nothing is found, otherwise the return value is the start position of the matching text. The selection is updated to show the matched text, but is not scrolled into view.

See also: SCI_SEARCHINTARGET, SCI_FINDTEXT

Search and replace using the target

Using SCI_REPLACESEL, modifications cause scrolling and other visible changes, which may take some time and cause unwanted display updates. If performing many changes, such as a replace all command, the target can be used instead. First, set the target, ie. the range to be replaced. Then call SCI_REPLACETARGET or SCI_REPLACETARGETRE.

Searching can be performed within the target range with SCI_SEARCHINTARGET, which uses a counted string to allow searching for null characters. It returns the position of the start of the matching text range or -1 for failure, in which case the target is not moved. The flags used by SCI_SEARCHINTARGET such as SCFIND_MATCHCASE, SCFIND_WHOLEWORD, SCFIND_WORDSTART, and SCFIND_REGEXP can be set with SCI_SETSEARCHFLAGS. SCI_SEARCHINTARGET may be simpler for some clients to use than SCI_FINDTEXT, as that requires using a pointer to a structure.

SCI_SETTARGETSTART(int pos)
SCI_GETTARGETSTART
SCI_SETTARGETEND(int pos)
SCI_GETTARGETEND
SCI_TARGETFROMSELECTION
SCI_SETSEARCHFLAGS(int searchFlags)
SCI_GETSEARCHFLAGS
SCI_SEARCHINTARGET(int length, const char *text)
SCI_REPLACETARGET(int length, const char *text)
SCI_REPLACETARGETRE(int length, const char *text)
SCI_GETTAG(int tagNumber, char *tagValue)

SCI_SETTARGETSTART(int pos)
SCI_GETTARGETSTART
SCI_SETTARGETEND(int pos)
SCI_GETTARGETEND
These functions set and return the start and end of the target. When searching in non-regular expression mode, you can set start greater than end to find the last matching text in the target rather than the first matching text. The target is also set by a successful SCI_SEARCHINTARGET.

SCI_TARGETFROMSELECTION
Set the target start and end to the start and end positions of the selection.

SCI_SETSEARCHFLAGS(int searchFlags)
SCI_GETSEARCHFLAGS
These get and set the searchFlags used by SCI_SEARCHINTARGET. There are several option flags including a simple regular expression search.

SCI_SEARCHINTARGET(int length, const char *text)
This searches for the first occurrence of a text string in the target defined by SCI_SETTARGETSTART and SCI_SETTARGETEND. The text string is not zero terminated; the size is set by length. The search is modified by the search flags set by SCI_SETSEARCHFLAGS. If the search succeeds, the target is set to the found text and the return value is the position of the start of the matching text. If the search fails, the result is -1.

SCI_REPLACETARGET(int length, const char *text)
If length is -1, text is a zero terminated string, otherwise length sets the number of character to replace the target with. After replacement, the target range refers to the replacement text. The return value is the length of the replacement string.
Note that the recommended way to delete text in the document is to set the target to the text to be removed, and to perform a replace target with an empty string.

SCI_REPLACETARGETRE(int length, const char *text)
This replaces the target using regular expressions. If length is -1, text is a zero terminated string, otherwise length is the number of characters to use. The replacement string is formed from the text string with any sequences of \1 through \9 replaced by tagged matches from the most recent regular expression search. \0 is replaced with all the matched text from the most recent search. After replacement, the target range refers to the replacement text. The return value is the length of the replacement string.

SCI_GETTAG(int tagNumber, char *tagValue)
Discover what text was matched by tagged expressions in a regular expression search. This is useful if the application wants to interpret the replacement string itself.

See also: SCI_FINDTEXT

Overtype

SCI_SETOVERTYPE(bool overType)
SCI_GETOVERTYPE
When overtype is enabled, each typed character replaces the character to the right of the text caret. When overtype is disabled, characters are inserted at the caret. SCI_GETOVERTYPE returns TRUE (1) if overtyping is active, otherwise FALSE (0) will be returned. Use SCI_SETOVERTYPE to set the overtype mode.

Cut, copy and paste

SCI_CUT
SCI_COPY
SCI_PASTE
SCI_CLEAR
SCI_CANPASTE
SCI_COPYRANGE(int start, int end)
SCI_COPYTEXT(int length, const char *text)
SCI_COPYALLOWLINE
SCI_SETPASTECONVERTENDINGS(bool convert)
SCI_GETPASTECONVERTENDINGS

SCI_CUT
SCI_COPY
SCI_PASTE
SCI_CLEAR
SCI_CANPASTE
SCI_COPYALLOWLINE
These commands perform the standard tasks of cutting and copying data to the clipboard, pasting from the clipboard into the document, and clearing the document. SCI_CANPASTE returns non-zero if the document isn't read-only and if the selection doesn't contain protected text. If you need a "can copy" or "can cut", use SCI_GETSELECTIONEMPTY(), which will be zero if there are any non-empty selection ranges implying that a copy or cut to the clipboard should work.

GTK+ does not really support SCI_CANPASTE and always returns TRUE unless the document is read-only.

On X, the clipboard is asynchronous and may require several messages between the destination and source applications. Data from SCI_PASTE will not arrive in the document immediately.

SCI_COPYALLOWLINE works the same as SCI_COPY except that if the selection is empty then the current line is copied. On Windows, an extra "MSDEVLineSelect" marker is added to the clipboard which is then used in SCI_PASTE to paste the whole line before the current line.

SCI_COPYRANGE(int start, int end)
SCI_COPYTEXT(int length, const char *text)

SCI_COPYRANGE copies a range of text from the document to the system clipboard and SCI_COPYTEXT copies a supplied piece of text to the system clipboard.

SCI_SETPASTECONVERTENDINGS(bool convert)
SCI_GETPASTECONVERTENDINGS
If this property is set then when text is pasted any line ends are converted to match the document's end of line mode as set with SCI_SETEOLMODE. Currently only changeable on Windows. On GTK+ pasted text is always converted.

Error handling

SCI_SETSTATUS(int status)
SCI_GETSTATUS
If an error occurs, Scintilla may set an internal error number that can be retrieved with SCI_GETSTATUS. To clear the error status call SCI_SETSTATUS(0). The currently defined statuses are:

SC_STATUS_OK 0 No failures
SC_STATUS_FAILURE 1 Generic failure
SC_STATUS_BADALLOC 2 Memory is exhausted

Undo and Redo

Scintilla has multiple level undo and redo. It will continue to collect undoable actions until memory runs out. Scintilla saves actions that change the document. Scintilla does not save caret and selection movements, view scrolling and the like. Sequences of typing or deleting are compressed into single transactions to make it easier to undo and redo at a sensible level of detail. Sequences of actions can be combined into transactions that are undone as a unit. These sequences occur between SCI_BEGINUNDOACTION and SCI_ENDUNDOACTION messages. These transactions can be nested and only the top-level sequences are undone as units.

SCI_UNDO
SCI_CANUNDO
SCI_EMPTYUNDOBUFFER
SCI_REDO
SCI_CANREDO
SCI_SETUNDOCOLLECTION(bool collectUndo)
SCI_GETUNDOCOLLECTION
SCI_BEGINUNDOACTION
SCI_ENDUNDOACTION
SCI_ADDUNDOACTION(int token, int flags)

SCI_UNDO
SCI_CANUNDO
SCI_UNDO undoes one action, or if the undo buffer has reached a SCI_ENDUNDOACTION point, all the actions back to the corresponding SCI_BEGINUNDOACTION.

SCI_CANUNDO returns 0 if there is nothing to undo, and 1 if there is. You would typically use the result of this message to enable/disable the Edit menu Undo command.

SCI_REDO
SCI_CANREDO
SCI_REDO undoes the effect of the last SCI_UNDO operation.

SCI_CANREDO returns 0 if there is no action to redo and 1 if there are undo actions to redo. You could typically use the result of this message to enable/disable the Edit menu Redo command.

SCI_EMPTYUNDOBUFFER
This command tells Scintilla to forget any saved undo or redo history. It also sets the save point to the start of the undo buffer, so the document will appear to be unmodified. This does not cause the SCN_SAVEPOINTREACHED notification to be sent to the container.

See also: SCI_SETSAVEPOINT

SCI_SETUNDOCOLLECTION(bool collectUndo)
SCI_GETUNDOCOLLECTION
You can control whether Scintilla collects undo information with SCI_SETUNDOCOLLECTION. Pass in true (1) to collect information and false (0) to stop collecting. If you stop collection, you should also use SCI_EMPTYUNDOBUFFER to avoid the undo buffer being unsynchronized with the data in the buffer.

You might wish to turn off saving undo information if you use the Scintilla to store text generated by a program (a Log view) or in a display window where text is often deleted and regenerated.

SCI_BEGINUNDOACTION
SCI_ENDUNDOACTION
Send these two messages to Scintilla to mark the beginning and end of a set of operations that you want to undo all as one operation but that you have to generate as several operations. Alternatively, you can use these to mark a set of operations that you do not want to have combined with the preceding or following operations if they are undone.

SCI_ADDUNDOACTION(int token, int flags)
The container can add its own actions into the undo stack by calling SCI_ADDUNDOACTION and an SCN_MODIFIED notification will be sent to the container with the SC_MOD_CONTAINER flag when it is time to undo (SC_PERFORMED_UNDO) or redo (SC_PERFORMED_REDO) the action. The token argument supplied is returned in the token field of the notification.

For example, if the container wanted to allow undo and redo of a 'toggle bookmark' command then it could call SCI_ADDUNDOACTION(line, 0) each time the command is performed. Then when it receives a notification to undo or redo it toggles a bookmark on the line given by the token field. If there are different types of commands or parameters that need to be stored into the undo stack then the container should maintain a stack of its own for the document and use the current position in that stack as the argument to SCI_ADDUNDOACTION(line). SCI_ADDUNDOACTION commands are not combined together into a single undo transaction unless grouped with SCI_BEGINUNDOACTION and SCI_ENDUNDOACTION.

The flags argument can be UNDO_MAY_COALESCE (1) if the container action may be coalesced along with any insertion and deletion actions into a single compound action, otherwise 0. Coalescing treats coalescible container actions as transparent so will still only group together insertions that look like typing or deletions that look like multiple uses of the Backspace or Delete keys.

Selection and information

Scintilla maintains a selection that stretches between two points, the anchor and the current position. If the anchor and the current position are the same, there is no selected text. Positions in the document range from 0 (before the first character), to the document size (after the last character). If you use messages, there is nothing to stop you setting a position that is in the middle of a CRLF pair, or in the middle of a 2 byte character. However, keyboard commands will not move the caret into such positions.

SCI_GETTEXTLENGTH
SCI_GETLENGTH
SCI_GETLINECOUNT
SCI_SETFIRSTVISIBLELINE(int lineDisplay)
SCI_GETFIRSTVISIBLELINE
SCI_LINESONSCREEN
SCI_GETMODIFY
SCI_SETSEL(int anchorPos, int currentPos)
SCI_GOTOPOS(int position)
SCI_GOTOLINE(int line)
SCI_SETCURRENTPOS(int position)
SCI_GETCURRENTPOS
SCI_SETANCHOR(int position)
SCI_GETANCHOR
SCI_SETSELECTIONSTART(int position)
SCI_GETSELECTIONSTART
SCI_SETSELECTIONEND(int position)
SCI_GETSELECTIONEND
SCI_SETEMPTYSELECTION(int pos)
SCI_SELECTALL
SCI_LINEFROMPOSITION(int position)
SCI_POSITIONFROMLINE(int line)
SCI_GETLINEENDPOSITION(int line)
SCI_LINELENGTH(int line)
SCI_GETCOLUMN(int position)
SCI_FINDCOLUMN(int line, int column)
SCI_POSITIONFROMPOINT(int x, int y)
SCI_POSITIONFROMPOINTCLOSE(int x, int y)
SCI_CHARPOSITIONFROMPOINT(int x, int y)
SCI_CHARPOSITIONFROMPOINTCLOSE(int x, int y)
SCI_POINTXFROMPOSITION(<unused>, int position)
SCI_POINTYFROMPOSITION(<unused>, int position)
SCI_HIDESELECTION(bool hide)
SCI_GETSELTEXT(<unused>, char *text)
SCI_GETCURLINE(int textLen, char *text)
SCI_SELECTIONISRECTANGLE
SCI_SETSELECTIONMODE(int mode)
SCI_GETSELECTIONMODE
SCI_GETLINESELSTARTPOSITION(int line)
SCI_GETLINESELENDPOSITION(int line)
SCI_MOVECARETINSIDEVIEW
SCI_WORDENDPOSITION(int position, bool onlyWordCharacters)
SCI_WORDSTARTPOSITION(int position, bool onlyWordCharacters)
SCI_POSITIONBEFORE(int position)
SCI_POSITIONAFTER(int position)
SCI_COUNTCHARACTERS(int startPos, int endPos)
SCI_TEXTWIDTH(int styleNumber, const char *text)
SCI_TEXTHEIGHT(int line)
SCI_CHOOSECARETX
SCI_MOVESELECTEDLINESUP
SCI_MOVESELECTEDLINESDOWN

SCI_GETTEXTLENGTH
SCI_GETLENGTH
Both these messages return the length of the document in bytes.

SCI_GETLINECOUNT
This returns the number of lines in the document. An empty document contains 1 line. A document holding only an end of line sequence has 2 lines.

SCI_SETFIRSTVISIBLELINE(int lineDisplay)
SCI_GETFIRSTVISIBLELINE
These messages retrieve and set the line number of the first visible line in the Scintilla view. The first line in the document is numbered 0. The value is a visible line rather than a document line.

SCI_LINESONSCREEN
This returns the number of complete lines visible on the screen. With a constant line height, this is the vertical space available divided by the line separation. Unless you arrange to size your window to an integral number of lines, there may be a partial line visible at the bottom of the view.

SCI_GETMODIFY
This returns non-zero if the document is modified and 0 if it is unmodified. The modified status of a document is determined by the undo position relative to the save point. The save point is set by SCI_SETSAVEPOINT, usually when you have saved data to a file.

If you need to be notified when the document becomes modified, Scintilla notifies the container that it has entered or left the save point with the SCN_SAVEPOINTREACHED and SCN_SAVEPOINTLEFT notification messages.

SCI_SETSEL(int anchorPos, int currentPos)
This message sets both the anchor and the current position. If currentPos is negative, it means the end of the document. If anchorPos is negative, it means remove any selection (i.e. set the anchor to the same position as currentPos). The caret is scrolled into view after this operation.

SCI_GOTOPOS(int pos)
This removes any selection, sets the caret at pos and scrolls the view to make the caret visible, if necessary. It is equivalent to SCI_SETSEL(pos, pos). The anchor position is set the same as the current position.

SCI_GOTOLINE(int line)
This removes any selection and sets the caret at the start of line number line and scrolls the view (if needed) to make it visible. The anchor position is set the same as the current position. If line is outside the lines in the document (first line is 0), the line set is the first or last.

SCI_SETCURRENTPOS(int pos)
This sets the current position and creates a selection between the anchor and the current position. The caret is not scrolled into view.

See also: SCI_SCROLLCARET

SCI_GETCURRENTPOS
This returns the current position.

SCI_SETANCHOR(int pos)
This sets the anchor position and creates a selection between the anchor position and the current position. The caret is not scrolled into view.

See also: SCI_SCROLLCARET

SCI_GETANCHOR
This returns the current anchor position.

SCI_SETSELECTIONSTART(int pos)
SCI_SETSELECTIONEND(int pos)
These set the selection based on the assumption that the anchor position is less than the current position. They do not make the caret visible. The table shows the positions of the anchor and the current position after using these messages.

anchor current
SCI_SETSELECTIONSTART pos Max(pos, current)
SCI_SETSELECTIONEND Min(anchor, pos) pos

See also: SCI_SCROLLCARET

SCI_GETSELECTIONSTART
SCI_GETSELECTIONEND
These return the start and end of the selection without regard to which end is the current position and which is the anchor. SCI_GETSELECTIONSTART returns the smaller of the current position or the anchor position. SCI_GETSELECTIONEND returns the larger of the two values.

SCI_SETEMPTYSELECTION(int pos)
This removes any selection and sets the caret at pos. The caret is not scrolled into view.

SCI_SELECTALL
This selects all the text in the document. The current position is not scrolled into view.

SCI_LINEFROMPOSITION(int pos)
This message returns the line that contains the position pos in the document. The return value is 0 if pos <= 0. The return value is the last line if pos is beyond the end of the document.

SCI_POSITIONFROMLINE(int line)
This returns the document position that corresponds with the start of the line. If line is negative, the position of the line holding the start of the selection is returned. If line is greater than the lines in the document, the return value is -1. If line is equal to the number of lines in the document (i.e. 1 line past the last line), the return value is the end of the document.

SCI_GETLINEENDPOSITION(int line)
This returns the position at the end of the line, before any line end characters. If line is the last line in the document (which does not have any end of line characters), the result is the size of the document. If line is negative or line >= SCI_GETLINECOUNT(), the result is undefined.

SCI_LINELENGTH(int line)
This returns the length of the line, including any line end characters. If line is negative or beyond the last line in the document, the result is 0. If you want the length of the line not including any end of line characters, use SCI_GETLINEENDPOSITION(line) - SCI_POSITIONFROMLINE(line).

SCI_GETSELTEXT(<unused>, char *text)
This copies the currently selected text and a terminating 0 byte to the text buffer. The buffer size should be determined by calling with a NULL pointer for the text argument SCI_GETSELTEXT(0,0). This allows for rectangular and discontiguous selections as well as simple selections. See Multiple Selection for information on how multiple and rectangular selections and virtual space are copied.

See also: SCI_GETCURLINE, SCI_GETLINE, SCI_GETTEXT, SCI_GETSTYLEDTEXT, SCI_GETTEXTRANGE

SCI_GETCURLINE(int textLen, char *text)
This retrieves the text of the line containing the caret and returns the position within the line of the caret. Pass in char* text pointing at a buffer large enough to hold the text you wish to retrieve and a terminating 0 character. Set textLen to the length of the buffer which must be at least 1 to hold the terminating 0 character. If the text argument is 0 then the length that should be allocated to store the entire current line is returned.

See also: SCI_GETSELTEXT, SCI_GETLINE, SCI_GETTEXT, SCI_GETSTYLEDTEXT, SCI_GETTEXTRANGE

SCI_SELECTIONISRECTANGLE
This returns 1 if the current selection is in rectangle mode, 0 if not.

SCI_SETSELECTIONMODE(int mode)
SCI_GETSELECTIONMODE
The two functions set and get the selection mode, which can be stream (SC_SEL_STREAM=0) or rectangular (SC_SEL_RECTANGLE=1) or by lines (SC_SEL_LINES=2) or thin rectangular (SC_SEL_THIN=3). When set in these modes, regular caret moves will extend or reduce the selection, until the mode is cancelled by a call with same value or with SCI_CANCEL. The get function returns the current mode even if the selection was made by mouse or with regular extended moves. SC_SEL_THIN is the mode after a rectangular selection has been typed into and ensures that no characters are selected.

SCI_GETLINESELSTARTPOSITION(int line)
SCI_GETLINESELENDPOSITION(int line)
Retrieve the position of the start and end of the selection at the given line with INVALID_POSITION returned if no selection on this line.

SCI_MOVECARETINSIDEVIEW
If the caret is off the top or bottom of the view, it is moved to the nearest line that is visible to its current position. Any selection is lost.

SCI_WORDENDPOSITION(int position, bool onlyWordCharacters)
SCI_WORDSTARTPOSITION(int position, bool onlyWordCharacters)
These messages return the start and end of words using the same definition of words as used internally within Scintilla. You can set your own list of characters that count as words with SCI_SETWORDCHARS. The position sets the start or the search, which is forwards when searching for the end and backwards when searching for the start.

Set onlyWordCharacters to true (1) to stop searching at the first non-word character in the search direction. If onlyWordCharacters is false (0), the first character in the search direction sets the type of the search as word or non-word and the search stops at the first non-matching character. Searches are also terminated by the start or end of the document.

If "w" represents word characters and "." represents non-word characters and "|" represents the position and true or false is the state of onlyWordCharacters:

Initial state end, true end, false start, true start, false
..ww..|..ww.. ..ww..|..ww.. ..ww....|ww.. ..ww..|..ww.. ..ww|....ww..
....ww|ww.... ....wwww|.... ....wwww|.... ....|wwww.... ....|wwww....
..ww|....ww.. ..ww|....ww.. ..ww....|ww.. ..|ww....ww.. ..|ww....ww..
..ww....|ww.. ..ww....ww|.. ..ww....ww|.. ..ww....|ww.. ..ww|....ww..

SCI_POSITIONBEFORE(int position)
SCI_POSITIONAFTER(int position)
These messages return the position before and after another position in the document taking into account the current code page. The minimum position returned is 0 and the maximum is the last position in the document. If called with a position within a multi byte character will return the position of the start/end of that character.

SCI_COUNTCHARACTERS(int startPos, int endPos)
Returns the number of whole characters between two positions..

SCI_TEXTWIDTH(int styleNumber, const char *text)
This returns the pixel width of a string drawn in the given styleNumber which can be used, for example, to decide how wide to make the line number margin in order to display a given number of numerals.

SCI_TEXTHEIGHT(int line)
This returns the height in pixels of a particular line. Currently all lines are the same height.

SCI_GETCOLUMN(int pos)
This message returns the column number of a position pos within the document taking the width of tabs into account. This returns the column number of the last tab on the line before pos, plus the number of characters between the last tab and pos. If there are no tab characters on the line, the return value is the number of characters up to the position on the line. In both cases, double byte characters count as a single character. This is probably only useful with monospaced fonts.

SCI_FINDCOLUMN(int line, int column)
This message returns the position of a column on a line taking the width of tabs into account. It treats a multi-byte character as a single column. Column numbers, like lines start at 0.

SCI_POSITIONFROMPOINT(int x, int y)
SCI_POSITIONFROMPOINTCLOSE(int x, int y)
SCI_POSITIONFROMPOINT finds the closest character position to a point and SCI_POSITIONFROMPOINTCLOSE is similar but returns -1 if the point is outside the window or not close to any characters.

SCI_CHARPOSITIONFROMPOINT(int x, int y)
SCI_CHARPOSITIONFROMPOINTCLOSE(int x, int y)
SCI_CHARPOSITIONFROMPOINT finds the closest character to a point and SCI_CHARPOSITIONFROMPOINTCLOSE is similar but returns -1 if the point is outside the window or not close to any characters. This is similar to the previous methods but finds characters rather than inter-character positions.

SCI_POINTXFROMPOSITION(<unused>, int pos)
SCI_POINTYFROMPOSITION(<unused>, int pos)
These messages return the x and y display pixel location of text at position pos in the document.

SCI_HIDESELECTION(bool hide)
The normal state is to make the selection visible by drawing it as set by SCI_SETSELFORE and SCI_SETSELBACK. However, if you hide the selection, it is drawn as normal text.

SCI_CHOOSECARETX
Scintilla remembers the x value of the last position horizontally moved to explicitly by the user and this value is then used when moving vertically such as by using the up and down keys. This message sets the current x position of the caret as the remembered value.

SCI_MOVESELECTEDLINESUP
Move the selected lines up one line, shifting the line above after the selection. The selection will be automatically extended to the beginning of the selection's first line and the end of the seletion's last line. If nothing was selected, the line the cursor is currently at will be selected.

SCI_MOVESELECTEDLINESDOWN
Move the selected lines down one line, shifting the line below before the selection. The selection will be automatically extended to the beginning of the selection's first line and the end of the seletion's last line. If nothing was selected, the line the cursor is currently at will be selected.

Multiple Selection and Virtual Space

SCI_SETMULTIPLESELECTION(bool multipleSelection)
SCI_GETMULTIPLESELECTION
SCI_SETADDITIONALSELECTIONTYPING(bool additionalSelectionTyping)
SCI_GETADDITIONALSELECTIONTYPING
SCI_SETMULTIPASTE(int multiPaste)
SCI_GETMULTIPASTE
SCI_SETVIRTUALSPACEOPTIONS(int virtualSpaceOptions)
SCI_GETVIRTUALSPACEOPTIONS
SCI_SETRECTANGULARSELECTIONMODIFIER(int modifier)
SCI_GETRECTANGULARSELECTIONMODIFIER

SCI_GETSELECTIONS
SCI_GETSELECTIONEMPTY
SCI_CLEARSELECTIONS
SCI_SETSELECTION(int caret, int anchor)
SCI_ADDSELECTION(int caret, int anchor)
SCI_SETMAINSELECTION(int selection)
SCI_GETMAINSELECTION

SCI_SETSELECTIONNCARET(int selection, int pos)
SCI_GETSELECTIONNCARET(int selection)
SCI_SETSELECTIONNCARETVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNCARETVIRTUALSPACE(int selection)
SCI_SETSELECTIONNANCHOR(int selection, int posAnchor)
SCI_GETSELECTIONNANCHOR(int selection)
SCI_SETSELECTIONNANCHORVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNANCHORVIRTUALSPACE(int selection)
SCI_SETSELECTIONNSTART(int selection, int pos)
SCI_GETSELECTIONNSTART(int selection)
SCI_SETSELECTIONNEND(int selection, int pos)
SCI_GETSELECTIONNEND(int selection)

SCI_SETRECTANGULARSELECTIONCARET(int pos)
SCI_GETRECTANGULARSELECTIONCARET
SCI_SETRECTANGULARSELECTIONCARETVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONCARETVIRTUALSPACE
SCI_SETRECTANGULARSELECTIONANCHOR(int posAnchor)
SCI_GETRECTANGULARSELECTIONANCHOR
SCI_SETRECTANGULARSELECTIONANCHORVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONANCHORVIRTUALSPACE

SCI_SETADDITIONALSELALPHA(int alpha)
SCI_GETADDITIONALSELALPHA
SCI_SETADDITIONALSELFORE(int colour)
SCI_SETADDITIONALSELBACK(int colour)
SCI_SETADDITIONALCARETFORE(int colour)
SCI_GETADDITIONALCARETFORE
SCI_SETADDITIONALCARETSBLINK(bool additionalCaretsBlink)
SCI_GETADDITIONALCARETSBLINK
SCI_SETADDITIONALCARETSVISIBLE(bool additionalCaretsVisible)
SCI_GETADDITIONALCARETSVISIBLE

SCI_SWAPMAINANCHORCARET
SCI_ROTATESELECTION

There may be multiple selections active at one time. More selections are made by holding down the Ctrl key while dragging with the mouse. The most recent selection is the main selection and determines which part of the document is shown automatically. Any selection apart from the main selection is called an additional selection. The calls in the previous section operate on the main selection. There is always at least one selection.

Rectangular selections are handled as multiple selections although the original rectangular range is remembered so that subsequent operations may be handled differently for rectangular selections. For example, pasting a rectangular selection places each piece in a vertical column.

Virtual space is space beyond the end of each line. The caret may be moved into virtual space but no real space will be added to the document until there is some text typed or some other text insertion command is used.

When discontiguous selections are copied to the clipboard, each selection is added to the clipboard text in order with no delimiting characters. For rectangular selections the document's line end is added after each line's text. Rectangular selections are always copied from top line to bottom, not in the in order of selection.Virtual space is not copied.

SCI_SETMULTIPLESELECTION(bool multipleSelection)
SCI_GETMULTIPLESELECTION
Enable or disable multiple selection. When multiple selection is disabled, it is not possible to select multiple ranges by holding down the Ctrl key while dragging with the mouse.

SCI_SETADDITIONALSELECTIONTYPING(bool additionalSelectionTyping)
SCI_GETADDITIONALSELECTIONTYPING
Whether typing, backspace, or delete works with multiple selections simultaneously.

SCI_SETMULTIPASTE(int multiPaste)
SCI_GETMULTIPASTE
When pasting into multiple selections, the pasted text can go into just the main selection with SC_MULTIPASTE_ONCE=0 or into each selection with SC_MULTIPASTE_EACH=1. SC_MULTIPASTE_ONCE is the default.

SCI_SETVIRTUALSPACEOPTIONS(int virtualSpace)
SCI_GETVIRTUALSPACEOPTIONS
Virtual space can be enabled or disabled for rectangular selections or in other circumstances or in both. There are two bit flags SCVS_RECTANGULARSELECTION=1 and SCVS_USERACCESSIBLE=2 which can be set independently. SCVS_NONE=0, the default, disables all use of virtual space.

SCI_SETRECTANGULARSELECTIONMODIFIER(int modifier)
SCI_GETRECTANGULARSELECTIONMODIFIER
On GTK+, the key used to indicate that a rectangular selection should be created when combined with a mouse drag can be set. The three possible values are SCMOD_CTRL=2 (default), SCMOD_ALT=4 or SCMOD_SUPER=8. Since SCMOD_ALT is often already used by a window manager, the window manager may need configuring to allow this choice. SCMOD_SUPER is often a system dependent modifier key such as the Left Windows key on a Windows keyboard or the Command key on a Mac.

SCI_GETSELECTIONS
Return the number of selections currently active.

SCI_GETSELECTIONEMPTY
Return 1 if every selected range is empty else 0.

SCI_CLEARSELECTIONS
Set a single empty selection at 0 as the only selection.

SCI_SETSELECTION(int caret, int anchor)
Set a single selection from anchor to caret as the only selection.

SCI_ADDSELECTION(int caret, int anchor)
Add a new selection from anchor to caret as the main selection retaining all other selections as additional selections. Since there is always at least one selection, to set a list of selections, the first selection should be added with SCI_SETSELECTION and later selections added with SCI_ADDSELECTION

SCI_SETMAINSELECTION(int selection)
SCI_GETMAINSELECTION
One of the selections is the main selection which is used to determine what range of text is automatically visible. The main selection may be displayed in different colours or with a differently styled caret. Only an already existing selection can be made main.

SCI_SETSELECTIONNCARET(int selection, int pos)
SCI_GETSELECTIONNCARET(int selection)
SCI_SETSELECTIONNCARETVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNCARETVIRTUALSPACE(int selection)
SCI_SETSELECTIONNANCHOR(int selection, int posAnchor)
SCI_GETSELECTIONNANCHOR(int selection)
SCI_SETSELECTIONNANCHORVIRTUALSPACE(int selection, int space)
SCI_GETSELECTIONNANCHORVIRTUALSPACE(int selection)
Set or query the position and amount of virtual space for the caret and anchor of each already existing selection.

SCI_SETSELECTIONNSTART(int selection, int pos)
SCI_GETSELECTIONNSTART(int selection)
SCI_SETSELECTIONNEND(int selection, int pos)
SCI_GETSELECTIONNEND(int selection)
Set or query the start and end position of each already existing selection. Mostly of use to query each range for its text.

SCI_SETRECTANGULARSELECTIONCARET(int pos)
SCI_GETRECTANGULARSELECTIONCARET
SCI_SETRECTANGULARSELECTIONCARETVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONCARETVIRTUALSPACE
SCI_SETRECTANGULARSELECTIONANCHOR(int posAnchor)
SCI_GETRECTANGULARSELECTIONANCHOR
SCI_SETRECTANGULARSELECTIONANCHORVIRTUALSPACE(int space)
SCI_GETRECTANGULARSELECTIONANCHORVIRTUALSPACE
Set or query the position and amount of virtual space for the caret and anchor of the rectangular selection. After setting the rectangular selection, this is broken down into multiple selections, one for each line.

SCI_SETADDITIONALSELALPHA(int alpha)
SCI_GETADDITIONALSELALPHA
SCI_SETADDITIONALSELFORE(int colour)
SCI_SETADDITIONALSELBACK(int colour)
Modify the appearence of additional selections so that they can be differentiated from the main selection which has its appearence set with SCI_SETSELALPHA, SCI_GETSELALPHA, SCI_SETSELFORE, and SCI_SETSELBACK.

SCI_SETADDITIONALCARETFORE(int colour)
SCI_GETADDITIONALCARETFORE
SCI_SETADDITIONALCARETSBLINK(bool additionalCaretsBlink)
SCI_GETADDITIONALCARETSBLINK
Modify the appearence of additional carets so that they can be differentiated from the main caret which has its appearence set with SCI_SETCARETFORE, SCI_GETCARETFORE, SCI_SETCARETPERIOD, and SCI_GETCARETPERIOD.

SCI_SETADDITIONALCARETSVISIBLE(bool additionalCaretsVisible)
SCI_GETADDITIONALCARETSVISIBLE
Determine whether to show additional carets (defaults to true).

SCI_SWAPMAINANCHORCARET
SCI_ROTATESELECTION
These commands may be assigned to keys to make it possible to manipulate multiple selections. SCI_SWAPMAINANCHORCARET moves the caret to the opposite end of the main selection. SCI_ROTATESELECTION makes the next selection be the main selection.

Scrolling and automatic scrolling

SCI_LINESCROLL(int column, int line)
SCI_SCROLLCARET
SCI_SCROLLRANGE(int secondary, int primary)
SCI_SETXCARETPOLICY(int caretPolicy, int caretSlop)
SCI_SETYCARETPOLICY(int caretPolicy, int caretSlop)
SCI_SETVISIBLEPOLICY(int caretPolicy, int caretSlop)
SCI_SETHSCROLLBAR(bool visible)
SCI_GETHSCROLLBAR
SCI_SETVSCROLLBAR(bool visible)
SCI_GETVSCROLLBAR
SCI_GETXOFFSET
SCI_SETXOFFSET(int xOffset)
SCI_SETSCROLLWIDTH(int pixelWidth)
SCI_GETSCROLLWIDTH
SCI_SETSCROLLWIDTHTRACKING(bool tracking)
SCI_GETSCROLLWIDTHTRACKING
SCI_SETENDATLASTLINE(bool endAtLastLine)
SCI_GETENDATLASTLINE

SCI_LINESCROLL(int column, int line)
This will attempt to scroll the display by the number of columns and lines that you specify. Positive line values increase the line number at the top of the screen (i.e. they move the text upwards as far as the user is concerned), Negative line values do the reverse.

The column measure is the width of a space in the default style. Positive values increase the column at the left edge of the view (i.e. they move the text leftwards as far as the user is concerned). Negative values do the reverse.

See also: SCI_SETXOFFSET

SCI_SCROLLCARET
If the current position (this is the caret if there is no selection) is not visible, the view is scrolled to make it visible according to the current caret policy.

SCI_SCROLLRANGE(int secondary, int primary)
Scroll the argument positions and the range between them into view giving priority to the primary position then the secondary position. The behaviour is similar to SCI_SCROLLCARET with the primary position used instead of the caret. An effort is then made to ensure that the secondary position and range between are also visible. This may be used to make a search match visible.

SCI_SETXCARETPOLICY(int caretPolicy, int caretSlop)
SCI_SETYCARETPOLICY(int caretPolicy, int caretSlop)
These set the caret policy. The value of caretPolicy is a combination of CARET_SLOP, CARET_STRICT, CARET_JUMPS and CARET_EVEN.

CARET_SLOP If set, we can define a slop value: caretSlop. This value defines an unwanted zone (UZ) where the caret is... unwanted. This zone is defined as a number of pixels near the vertical margins, and as a number of lines near the horizontal margins. By keeping the caret away from the edges, it is seen within its context. This makes it likely that the identifier that the caret is on can be completely seen, and that the current line is seen with some of the lines following it, which are often dependent on that line.
CARET_STRICT If set, the policy set by CARET_SLOP is enforced... strictly. The caret is centred on the display if caretSlop is not set, and cannot go in the UZ if caretSlop is set.
CARET_JUMPS If set, the display is moved more energetically so the caret can move in the same direction longer before the policy is applied again. '3UZ' notation is used to indicate three time the size of the UZ as a distance to the margin.
CARET_EVEN If not set, instead of having symmetrical UZs, the left and bottom UZs are extended up to right and top UZs respectively. This way, we favour the displaying of useful information: the beginning of lines, where most code reside, and the lines after the caret, for example, the body of a function.
slop strict jumps even Caret can go to the margin On reaching limit (going out of visibility
or going into the UZ) display is...
0 0 0 0 Yes moved to put caret on top/on right
0 0 0 1 Yes moved by one position
0 0 1 0 Yes moved to put caret on top/on right
0 0 1 1 Yes centred on the caret
0 1 - 0 Caret is always on top/on right of display -
0 1 - 1 No, caret is always centred -
1 0 0 0 Yes moved to put caret out of the asymmetrical UZ
1 0 0 1 Yes moved to put caret out of the UZ
1 0 1 0 Yes moved to put caret at 3UZ of the top or right margin
1 0 1 1 Yes moved to put caret at 3UZ of the margin
1 1 - 0 Caret is always at UZ of top/right margin -
1 1 0 1 No, kept out of UZ moved by one position
1 1 1 0 No, kept out of UZ moved to put caret at 3UZ of the margin

SCI_SETVISIBLEPOLICY(int caretPolicy, int caretSlop)
This determines how the vertical positioning is determined when SCI_ENSUREVISIBLEENFORCEPOLICY is called. It takes VISIBLE_SLOP and VISIBLE_STRICT flags for the policy parameter. It is similar in operation to SCI_SETYCARETPOLICY(int caretPolicy, int caretSlop).

SCI_SETHSCROLLBAR(bool visible)
SCI_GETHSCROLLBAR
The horizontal scroll bar is only displayed if it is needed for the assumed width. If you never wish to see it, call SCI_SETHSCROLLBAR(0). Use SCI_SETHSCROLLBAR(1) to enable it again. SCI_GETHSCROLLBAR returns the current state. The default state is to display it when needed.

See also: SCI_SETSCROLLWIDTH.

SCI_SETVSCROLLBAR(bool visible)
SCI_GETVSCROLLBAR
By default, the vertical scroll bar is always displayed when required. You can choose to hide or show it with SCI_SETVSCROLLBAR and get the current state with SCI_GETVSCROLLBAR.

SCI_SETXOFFSET(int xOffset)
SCI_GETXOFFSET
The xOffset is the horizontal scroll position in pixels of the start of the text view. A value of 0 is the normal position with the first text column visible at the left of the view.

See also: SCI_LINESCROLL

SCI_SETSCROLLWIDTH(int pixelWidth)
SCI_GETSCROLLWIDTH
For performance, Scintilla does not measure the display width of the document to determine the properties of the horizontal scroll bar. Instead, an assumed width is used. These messages set and get the document width in pixels assumed by Scintilla. The default value is 2000. To ensure the width of the currently visible lines can be scrolled use SCI_SETSCROLLWIDTHTRACKING

SCI_SETSCROLLWIDTHTRACKING(bool tracking)
SCI_GETSCROLLWIDTHTRACKING
If scroll width tracking is enabled then the scroll width is adjusted to ensure that all of the lines currently displayed can be completely scrolled. This mode never adjusts the scroll width to be narrower.

SCI_SETENDATLASTLINE(bool endAtLastLine)
SCI_GETENDATLASTLINE
SCI_SETENDATLASTLINE sets the scroll range so that maximum scroll position has the last line at the bottom of the view (default). Setting this to false allows scrolling one page below the last line.

White space

SCI_SETVIEWWS(int wsMode)
SCI_GETVIEWWS
SCI_SETWHITESPACEFORE(bool useWhitespaceForeColour, int colour)
SCI_SETWHITESPACEBACK(bool useWhitespaceBackColour, int colour)
SCI_SETWHITESPACESIZE(int size)
SCI_GETWHITESPACESIZE
SCI_SETEXTRAASCENT(int extraAscent)
SCI_GETEXTRAASCENT
SCI_SETEXTRADESCENT(int extraDescent)
SCI_GETEXTRADESCENT

SCI_SETVIEWWS(int wsMode)
SCI_GETVIEWWS
White space can be made visible which may be useful for languages in which white space is significant, such as Python. Space characters appear as small centred dots and tab characters as light arrows pointing to the right. There are also ways to control the display of end of line characters. The two messages set and get the white space display mode. The wsMode argument can be one of:

SCWS_INVISIBLE 0 The normal display mode with white space displayed as an empty background colour.
SCWS_VISIBLEALWAYS 1 White space characters are drawn as dots and arrows,
SCWS_VISIBLEAFTERINDENT 2 White space used for indentation is displayed normally but after the first visible character, it is shown as dots and arrows.

The effect of using any other wsMode value is undefined.

SCI_SETWHITESPACEFORE(bool useWhitespaceForeColour, int colour)
SCI_SETWHITESPACEBACK(bool useWhitespaceBackColour, int colour)
By default, the colour of visible white space is determined by the lexer in use. The foreground and/or background colour of all visible white space can be set globally, overriding the lexer's colours with SCI_SETWHITESPACEFORE and SCI_SETWHITESPACEBACK.

SCI_SETWHITESPACESIZE(int size)
SCI_GETWHITESPACESIZE
SCI_SETWHITESPACESIZE sets the size of the dots used for mark space characters. The SCI_GETWHITESPACESIZE message retrieves the current size.

SCI_SETEXTRAASCENT(int extraAscent)
SCI_GETEXTRAASCENT
SCI_SETEXTRADESCENT(int extraDescent)
SCI_GETEXTRADESCENT
Text is drawn with the base of each character on a 'baseline'. The height of a line is found from the maximum that any style extends above the baseline (its 'ascent'), added to the maximum that any style extends below the baseline (its 'descent'). Space may be added to the maximum ascent (SCI_SETEXTRAASCENT) and the maximum descent (SCI_SETEXTRADESCENT) to allow for more space between lines. This may done to make the text easier to read or to accomodate underlines or highlights.

Cursor

SCI_SETCURSOR(int curType)
SCI_GETCURSOR
The cursor is normally chosen in a context sensitive way, so it will be different over the margin than when over the text. When performing a slow action, you may wish to change to a wait cursor. You set the cursor type with SCI_SETCURSOR. The curType argument can be:

SC_CURSORNORMAL -1 The normal cursor is displayed.
SC_CURSORWAIT  4 The wait cursor is displayed when the mouse is over or owned by the Scintilla window.

Cursor values 1 through 7 have defined cursors, but only SC_CURSORWAIT is usefully controllable. Other values of curType cause a pointer to be displayed. The SCI_GETCURSOR message returns the last cursor type you set, or SC_CURSORNORMAL (-1) if you have not set a cursor type.

Mouse capture

SCI_SETMOUSEDOWNCAPTURES(bool captures)
SCI_GETMOUSEDOWNCAPTURES
When the mouse is pressed inside Scintilla, it is captured so future mouse movement events are sent to Scintilla. This behavior may be turned off with SCI_SETMOUSEDOWNCAPTURES(0).

Line endings

Scintilla can handle the major line end conventions and, depending on settings and the current lexer also support additional Unicode line ends.

Scintilla can interpret any of the Macintosh (\r), Unix (\n) and Windows (\r\n) line ends. When the user presses the Enter key, one of these line end strings is inserted into the buffer. The default is \r\n in Windows and \n in Unix, but this can be changed with the SCI_SETEOLMODE message. You can also convert the entire document to one of these line endings with SCI_CONVERTEOLS. Finally, you can choose to display the line endings with SCI_SETVIEWEOL.

For the UTF-8 encoding, three additional Unicode line ends, Next Line (NEL=U+0085), Line Separator (LS=U+2028), and Paragraph Separator (PS=U+2029) may optionally be interpreted when Unicode line ends is turned on and the current lexer also supports Unicode line ends.

SCI_SETEOLMODE(int eolMode)
SCI_GETEOLMODE
SCI_CONVERTEOLS(int eolMode)
SCI_SETVIEWEOL(bool visible)
SCI_GETVIEWEOL

SCI_SETEOLMODE(int eolMode)
SCI_GETEOLMODE
SCI_SETEOLMODE sets the characters that are added into the document when the user presses the Enter key. You can set eolMode to one of SC_EOL_CRLF (0), SC_EOL_CR (1), or SC_EOL_LF (2). The SCI_GETEOLMODE message retrieves the current state.

SCI_CONVERTEOLS(int eolMode)
This message changes all the end of line characters in the document to match eolMode. Valid values are: SC_EOL_CRLF (0), SC_EOL_CR (1), or SC_EOL_LF (2).

SCI_SETVIEWEOL(bool visible)
SCI_GETVIEWEOL
Normally, the end of line characters are hidden, but SCI_SETVIEWEOL allows you to display (or hide) them by setting visible true (or false). The visible rendering of the end of line characters is similar to (CR), (LF), or (CR)(LF). SCI_GETVIEWEOL returns the current state.

These features are provisional

SCI_GETLINEENDTYPESSUPPORTED
SCI_GETLINEENDTYPESSUPPORTED reports the different types of line ends supported by the current lexer. This is a bit set although there is currently only a single choice with either SC_LINE_END_TYPE_DEFAULT (0) or SC_LINE_END_TYPE_UNICODE (1). These values are also used by the other messages concerned with Unicode line ends.

SCI_SETLINEENDTYPESALLOWED(int lineEndBitSet)
SCI_GETLINEENDTYPESALLOWED
By default, only the ASCII line ends are interpreted. Unicode line ends may be requested with SCI_SETLINEENDTYPESALLOWED(SC_LINE_END_TYPE_UNICODE) but this will be ineffective unless the lexer also allows you Unicode line ends. SCI_GETLINEENDTYPESALLOWED returns the current state.

SCI_GETLINEENDTYPESACTIVE
SCI_GETLINEENDTYPESACTIVE reports the set of line ends currently interpreted by Scintilla. It is SCI_GETLINEENDTYPESSUPPORTED & SCI_GETLINEENDTYPESALLOWED.

Styling

The styling messages allow you to assign styles to text. The standard Scintilla settings divide the 8 style bits available for each character into 5 bits (0 to 4 = styles 0 to 31) that set a style and three bits (5 to 7) that define indicators. You can change the balance between styles and indicators with SCI_SETSTYLEBITS. If your styling needs can be met by one of the standard lexers, or if you can write your own, then a lexer is probably the easiest way to style your document. If you choose to use the container to do the styling you can use the SCI_SETLEXER command to select SCLEX_CONTAINER, in which case the container is sent a SCN_STYLENEEDED notification each time text needs styling for display. As another alternative, you might use idle time to style the document. Even if you use a lexer, you might use the styling commands to mark errors detected by a compiler. The following commands can be used.

SCI_GETENDSTYLED
SCI_STARTSTYLING(int position, int mask)
SCI_SETSTYLING(int length, int style)
SCI_SETSTYLINGEX(int length, const char *styles)
SCI_SETLINESTATE(int line, int value)
SCI_GETLINESTATE(int line)
SCI_GETMAXLINESTATE

SCI_GETENDSTYLED
Scintilla keeps a record of the last character that is likely to be styled correctly. This is moved forwards when characters after it are styled and moved backwards if changes are made to the text of the document before it. Before drawing text, this position is checked to see if any styling is needed and, if so, a SCN_STYLENEEDED notification message is sent to the container. The container can send SCI_GETENDSTYLED to work out where it needs to start styling. Scintilla will always ask to style whole lines.

SCI_STARTSTYLING(int pos, int mask)
This prepares for styling by setting the styling position pos to start at and a mask indicating which bits of the style bytes can be set. The mask allows styling to occur over several passes, with, for example, basic styling done on an initial pass to ensure that the text of the code is seen quickly and correctly, and then a second slower pass, detecting syntax errors and using indicators to show where these are. For example, with the standard settings of 5 style bits and 3 indicator bits, you would use a mask value of 31 (0x1f) if you were setting text styles and did not want to change the indicators. After SCI_STARTSTYLING, send multiple SCI_SETSTYLING messages for each lexical entity to style.

SCI_SETSTYLING(int length, int style)
This message sets the style of length characters starting at the styling position and then increases the styling position by length, ready for the next call. If sCell is the style byte, the operation is:
if ((sCell & mask) != style) sCell = (sCell & ~mask) | (style & mask);

SCI_SETSTYLINGEX(int length, const char *styles)
As an alternative to SCI_SETSTYLING, which applies the same style to each byte, you can use this message which specifies the styles for each of length bytes from the styling position and then increases the styling position by length, ready for the next call. The length styling bytes pointed at by styles should not contain any bits not set in mask.

SCI_SETLINESTATE(int line, int value)
SCI_GETLINESTATE(int line)
As well as the 8 bits of lexical state stored for each character there is also an integer stored for each line. This can be used for longer lived parse states such as what the current scripting language is in an ASP page. Use SCI_SETLINESTATE to set the integer value and SCI_GETLINESTATE to get the value. Changing the value produces a SC_MOD_CHANGELINESTATE notification.

SCI_GETMAXLINESTATE
This returns the last line that has any line state.

Style definition

While the style setting messages mentioned above change the style numbers associated with text, these messages define how those style numbers are interpreted visually. There are 256 lexer styles that can be set, numbered 0 to STYLE_MAX (255). Unless you use SCI_SETSTYLEBITS to change the number of style bits, styles 0 to 31 are used to set the text attributes. There are also some predefined numbered styles starting at 32, The following STYLE_* constants are defined.

STYLE_DEFAULT 32 This style defines the attributes that all styles receive when the SCI_STYLECLEARALL message is used.
STYLE_LINENUMBER 33 This style sets the attributes of the text used to display line numbers in a line number margin. The background colour set for this style also sets the background colour for all margins that do not have any folding mask bits set. That is, any margin for which mask & SC_MASK_FOLDERS is 0. See SCI_SETMARGINMASKN for more about masks.
STYLE_BRACELIGHT 34 This style sets the attributes used when highlighting braces with the SCI_BRACEHIGHLIGHT message and when highlighting the corresponding indentation with SCI_SETHIGHLIGHTGUIDE.
STYLE_BRACEBAD 35 This style sets the display attributes used when marking an unmatched brace with the SCI_BRACEBADLIGHT message.
STYLE_CONTROLCHAR 36 This style sets the font used when drawing control characters. Only the font, size, bold, italics, and character set attributes are used and not the colour attributes. See also: SCI_SETCONTROLCHARSYMBOL.
STYLE_INDENTGUIDE 37 This style sets the foreground and background colours used when drawing the indentation guides.
STYLE_CALLTIP 38 Call tips normally use the font attributes defined by STYLE_DEFAULT. Use of SCI_CALLTIPUSESTYLE causes call tips to use this style instead. Only the font face name, font size, foreground and background colours and character set attributes are used.
STYLE_LASTPREDEFINED 39 To make it easier for client code to discover the range of styles that are predefined, this is set to the style number of the last predefined style. This is currently set to 39 and the last style with an identifier is 38, which reserves space for one future predefined style.
STYLE_MAX 255 This is not a style but is the number of the maximum style that can be set. Styles between STYLE_LASTPREDEFINED and STYLE_MAX would be appropriate if you used SCI_SETSTYLEBITS to set more than 5 style bits.

For each style you can set the font name, size and use of bold, italic and underline, foreground and background colour and the character set. You can also choose to hide text with a given style, display all characters as upper or lower case and fill from the last character on a line to the end of the line (for embedded languages). There is also an experimental attribute to make text read-only.

It is entirely up to you how you use styles. If you want to use syntax colouring you might use style 0 for white space, style 1 for numbers, style 2 for keywords, style 3 for strings, style 4 for preprocessor, style 5 for operators, and so on.

SCI_STYLERESETDEFAULT
SCI_STYLECLEARALL
SCI_STYLESETFONT(int styleNumber, char *fontName)
SCI_STYLEGETFONT(int styleNumber, char *fontName)
SCI_STYLESETSIZE(int styleNumber, int sizeInPoints)
SCI_STYLEGETSIZE(int styleNumber)
SCI_STYLESETSIZEFRACTIONAL(int styleNumber, int sizeInHundredthPoints)
SCI_STYLEGETSIZEFRACTIONAL(int styleNumber)
SCI_STYLESETBOLD(int styleNumber, bool bold)
SCI_STYLEGETBOLD(int styleNumber)
SCI_STYLESETWEIGHT(int styleNumber, int weight)
SCI_STYLEGETWEIGHT(int styleNumber)
SCI_STYLESETITALIC(int styleNumber, bool italic)
SCI_STYLEGETITALIC(int styleNumber)
SCI_STYLESETUNDERLINE(int styleNumber, bool underline)
SCI_STYLEGETUNDERLINE(int styleNumber)
SCI_STYLESETFORE(int styleNumber, int colour)
SCI_STYLEGETFORE(int styleNumber)
SCI_STYLESETBACK(int styleNumber, int colour)
SCI_STYLEGETBACK(int styleNumber)
SCI_STYLESETEOLFILLED(int styleNumber, bool eolFilled)
SCI_STYLEGETEOLFILLED(int styleNumber)
SCI_STYLESETCHARACTERSET(int styleNumber, int charSet)
SCI_STYLEGETCHARACTERSET(int styleNumber)
SCI_STYLESETCASE(int styleNumber, int caseMode)
SCI_STYLEGETCASE(int styleNumber)
SCI_STYLESETVISIBLE(int styleNumber, bool visible)
SCI_STYLEGETVISIBLE(int styleNumber)
SCI_STYLESETCHANGEABLE(int styleNumber, bool changeable)
SCI_STYLEGETCHANGEABLE(int styleNumber)
SCI_STYLESETHOTSPOT(int styleNumber, bool hotspot)
SCI_STYLEGETHOTSPOT(int styleNumber)

SCI_STYLERESETDEFAULT
This message resets STYLE_DEFAULT to its state when Scintilla was initialised.

SCI_STYLECLEARALL
This message sets all styles to have the same attributes as STYLE_DEFAULT. If you are setting up Scintilla for syntax colouring, it is likely that the lexical styles you set will be very similar. One way to set the styles is to:
1. Set STYLE_DEFAULT to the common features of all styles.
2. Use SCI_STYLECLEARALL to copy this to all styles.
3. Set the style attributes that make your lexical styles different.

SCI_STYLESETFONT(int styleNumber, const char *fontName)
SCI_STYLEGETFONT(int styleNumber, char *fontName)
SCI_STYLESETSIZE(int styleNumber, int sizeInPoints)
SCI_STYLEGETSIZE(int styleNumber)
SCI_STYLESETSIZEFRACTIONAL(int styleNumber, int sizeInHundredthPoints)
SCI_STYLEGETSIZEFRACTIONAL(int styleNumber)
SCI_STYLESETBOLD(int styleNumber, bool bold)
SCI_STYLEGETBOLD(int styleNumber)
SCI_STYLESETWEIGHT(int styleNumber, int weight)
SCI_STYLEGETWEIGHT(int styleNumber)
SCI_STYLESETITALIC(int styleNumber, bool italic)
SCI_STYLEGETITALIC(int styleNumber)
These messages (plus SCI_STYLESETCHARACTERSET) set the font attributes that are used to match the fonts you request to those available. The fontName is a zero terminated string holding the name of a font. Under Windows, only the first 32 characters of the name are used and the name is not case sensitive. For internal caching, Scintilla tracks fonts by name and does care about the casing of font names, so please be consistent. On GTK+, Pango is used to display text.

Sizes can be set to a whole number of points with SCI_STYLESETSIZE or to a fractional point size in hundredths of a point with SCI_STYLESETSIZEFRACTIONAL by multiplying the size by 100 (SC_FONT_SIZE_MULTIPLIER). For example, a text size of 9.4 points is set with SCI_STYLESETSIZEFRACTIONAL(<style>, 940).

The weight or boldness of a font can be set with SCI_STYLESETBOLD or SCI_STYLESETWEIGHT. The weight is a number between 1 and 999 with 1 being very light and 999 very heavy. While any value can be used, fonts often only support between 2 and 4 weights with three weights being common enough to have symbolic names: SC_WEIGHT_NORMAL (400), SC_WEIGHT_SEMIBOLD (600), and SC_WEIGHT_BOLD (700). The SCI_STYLESETBOLD message takes a boolean argument with 0 choosing SC_WEIGHT_NORMAL and 1 SC_WEIGHT_BOLD.

SCI_STYLESETUNDERLINE(int styleNumber, bool underline)
SCI_STYLEGETUNDERLINE(int styleNumber)
You can set a style to be underlined. The underline is drawn in the foreground colour. All characters with a style that includes the underline attribute are underlined, even if they are white space.

SCI_STYLESETFORE(int styleNumber, int colour)
SCI_STYLEGETFORE(int styleNumber)
SCI_STYLESETBACK(int styleNumber, int colour)
SCI_STYLEGETBACK(int styleNumber)
Text is drawn in the foreground colour. The space in each character cell that is not occupied by the character is drawn in the background colour.

SCI_STYLESETEOLFILLED(int styleNumber, bool eolFilled)
SCI_STYLEGETEOLFILLED(int styleNumber)
If the last character in the line has a style with this attribute set, the remainder of the line up to the right edge of the window is filled with the background colour set for the last character. This is useful when a document contains embedded sections in another language such as HTML pages with embedded JavaScript. By setting eolFilled to true and a consistent background colour (different from the background colour set for the HTML styles) to all JavaScript styles then JavaScript sections will be easily distinguished from HTML.

SCI_STYLESETCHARACTERSET(int styleNumber, int charSet)
SCI_STYLEGETCHARACTERSET(int styleNumber)
You can set a style to use a different character set than the default. The places where such characters sets are likely to be useful are comments and literal strings. For example, SCI_STYLESETCHARACTERSET(SCE_C_STRING, SC_CHARSET_RUSSIAN) would ensure that strings in Russian would display correctly in C and C++ (SCE_C_STRING is the style number used by the C and C++ lexer to display literal strings; it has the value 6). This feature works differently on Windows and GTK+.

The character sets supported on Windows are:
SC_CHARSET_ANSI, SC_CHARSET_ARABIC, SC_CHARSET_BALTIC, SC_CHARSET_CHINESEBIG5, SC_CHARSET_DEFAULT, SC_CHARSET_EASTEUROPE, SC_CHARSET_GB2312, SC_CHARSET_GREEK, SC_CHARSET_HANGUL, SC_CHARSET_HEBREW, SC_CHARSET_JOHAB, SC_CHARSET_MAC, SC_CHARSET_OEM, SC_CHARSET_RUSSIAN (code page 1251), SC_CHARSET_SHIFTJIS, SC_CHARSET_SYMBOL, SC_CHARSET_THAI, SC_CHARSET_TURKISH, and SC_CHARSET_VIETNAMESE.

The character sets supported on GTK+ are:
SC_CHARSET_ANSI, SC_CHARSET_CYRILLIC (code page 1251), SC_CHARSET_EASTEUROPE, SC_CHARSET_GB2312, SC_CHARSET_HANGUL, SC_CHARSET_RUSSIAN (KOI8-R), SC_CHARSET_SHIFTJIS, and SC_CHARSET_8859_15.

SCI_STYLESETCASE(int styleNumber, int caseMode)
SCI_STYLEGETCASE(int styleNumber)
The value of caseMode determines how text is displayed. You can set upper case (SC_CASE_UPPER, 1) or lower case (SC_CASE_LOWER, 2) or display normally (SC_CASE_MIXED, 0). This does not change the stored text, only how it is displayed.

SCI_STYLESETVISIBLE(int styleNumber, bool visible)
SCI_STYLEGETVISIBLE(int styleNumber)
Text is normally visible. However, you can completely hide it by giving it a style with the visible set to 0. This could be used to hide embedded formatting instructions or hypertext keywords in HTML or XML.

SCI_STYLESETCHANGEABLE(int styleNumber, bool changeable)
SCI_STYLEGETCHANGEABLE(int styleNumber)
This is an experimental and incompletely implemented style attribute. The default setting is changeable set true but when set false it makes text read-only. Currently it only stops the caret from being within not-changeable text and does not yet stop deleting a range that contains not-changeable text.

SCI_STYLESETHOTSPOT(int styleNumber, bool hotspot)
SCI_STYLEGETHOTSPOT(int styleNumber)
This style is used to mark ranges of text that can detect mouse clicks. The cursor changes to a hand over hotspots, and the foreground, and background colours may change and an underline appear to indicate that these areas are sensitive to clicking. This may be used to allow hyperlinks to other documents.

Caret, selection, and hotspot styles

The selection is shown by changing the foreground and/or background colours. If one of these is not set then that attribute is not changed for the selection. The default is to show the selection by changing the background to light gray and leaving the foreground the same as when it was not selected. When there is no selection, the current insertion point is marked by the text caret. This is a vertical line that is normally blinking on and off to attract the users attention.

SCI_SETSELFORE(bool useSelectionForeColour, int colour)
SCI_SETSELBACK(bool useSelectionBackColour, int colour)
SCI_SETSELALPHA(int alpha)
SCI_GETSELALPHA
SCI_SETSELEOLFILLED(bool filled)
SCI_GETSELEOLFILLED
SCI_SETCARETFORE(int colour)
SCI_GETCARETFORE
SCI_SETCARETLINEVISIBLE(bool show)
SCI_GETCARETLINEVISIBLE
SCI_SETCARETLINEBACK(int colour)
SCI_GETCARETLINEBACK
SCI_SETCARETLINEBACKALPHA(int alpha)
SCI_GETCARETLINEBACKALPHA
SCI_SETCARETLINEVISIBLEALWAYS(bool alwaysVisible)
SCI_GETCARETLINEVISIBLEALWAYS
SCI_SETCARETPERIOD(int milliseconds)
SCI_GETCARETPERIOD
SCI_SETCARETSTYLE(int style)
SCI_GETCARETSTYLE
SCI_SETCARETWIDTH(int pixels)
SCI_GETCARETWIDTH
SCI_SETHOTSPOTACTIVEFORE(bool useSetting, int colour)
SCI_GETHOTSPOTACTIVEFORE
SCI_SETHOTSPOTACTIVEBACK(bool useSetting, int colour)
SCI_GETHOTSPOTACTIVEBACK
SCI_SETHOTSPOTACTIVEUNDERLINE(bool underline)
SCI_GETHOTSPOTACTIVEUNDERLINE
SCI_SETHOTSPOTSINGLELINE(bool singleLine)
SCI_GETHOTSPOTSINGLELINE
SCI_SETCONTROLCHARSYMBOL(int symbol)
SCI_GETCONTROLCHARSYMBOL
SCI_SETCARETSTICKY(int useCaretStickyBehaviour)
SCI_GETCARETSTICKY
SCI_TOGGLECARETSTICKY

SCI_SETSELFORE(bool useSelectionForeColour, int colour)
SCI_SETSELBACK(bool useSelectionBackColour, int colour)
You can choose to override the default selection colouring with these two messages. The colour you provide is used if you set useSelection*Colour to true. If it is set to false, the default styled colouring is used and the colour argument has no effect.

SCI_SETSELALPHA(int alpha)
SCI_GETSELALPHA
The selection can be drawn translucently in the selection background colour by setting an alpha value.

SCI_SETSELEOLFILLED(bool filled)
SCI_GETSELEOLFILLED
The selection can be drawn up to the right hand border by setting this property.

SCI_SETCARETFORE(int colour)
SCI_GETCARETFORE
The colour of the caret can be set with SCI_SETCARETFORE and retrieved with SCI_GETCARETFORE.

SCI_SETCARETLINEVISIBLE(bool show)
SCI_GETCARETLINEVISIBLE
SCI_SETCARETLINEBACK(int colour)
SCI_GETCARETLINEBACK
SCI_SETCARETLINEBACKALPHA(int alpha)
SCI_GETCARETLINEBACKALPHA
You can choose to make the background colour of the line containing the caret different with these messages. To do this, set the desired background colour with SCI_SETCARETLINEBACK, then use SCI_SETCARETLINEVISIBLE(true) to enable the effect. You can cancel the effect with SCI_SETCARETLINEVISIBLE(false). The two SCI_GETCARET* functions return the state and the colour. This form of background colouring has highest priority when a line has markers that would otherwise change the background colour. The caret line may also be drawn translucently which allows other background colours to show through. This is done by setting the alpha (translucency) value by calling SCI_SETCARETLINEBACKALPHA. When the alpha is not SC_ALPHA_NOALPHA, the caret line is drawn after all other features so will affect the colour of all other features.

SCI_SETCARETLINEVISIBLEALWAYS(bool alwaysVisible)
SCI_GETCARETLINEVISIBLEALWAYS
Choose to make the caret line always visible even when the window is not in focus. Default behaviour SCI_SETCARETLINEVISIBLEALWAYS(false) the caret line is only visible when the window is in focus.

SCI_SETCARETPERIOD(int milliseconds)
SCI_GETCARETPERIOD
The rate at which the caret blinks can be set with SCI_SETCARETPERIOD which determines the time in milliseconds that the caret is visible or invisible before changing state. Setting the period to 0 stops the caret blinking. The default value is 500 milliseconds. SCI_GETCARETPERIOD returns the current setting.

SCI_SETCARETSTYLE(int style)
SCI_GETCARETSTYLE
The style of the caret can be set with SCI_SETCARETSTYLE to be a line caret (CARETSTYLE_LINE=1), a block caret (CARETSTYLE_BLOCK=2) or to not draw at all (CARETSTYLE_INVISIBLE=0). The default value is the line caret (CARETSTYLE_LINE=1). You can determine the current caret style setting using SCI_GETCARETSTYLE.

The block character draws most combining and multibyte character sequences successfully, though some fonts like Thai Fonts (and possibly others) can sometimes appear strange when the cursor is positioned at these characters, which may result in only drawing a part of the cursor character sequence. This is most notable on Windows platforms.

SCI_SETCARETWIDTH(int pixels)
SCI_GETCARETWIDTH
The width of the line caret can be set with SCI_SETCARETWIDTH to a value of 0, 1, 2 or 3 pixels. The default width is 1 pixel. You can read back the current width with SCI_GETCARETWIDTH. A width of 0 makes the caret invisible (added at version 1.50), similar to setting the caret style to CARETSTYLE_INVISIBLE (though not interchangable). This setting only affects the width of the cursor when the cursor style is set to line caret mode, it does not affect the width for a block caret.

SCI_SETHOTSPOTACTIVEFORE(bool useHotSpotForeColour, int colour)
SCI_GETHOTSPOTACTIVEFORE
SCI_SETHOTSPOTACTIVEBACK(bool useHotSpotBackColour, int colour)
SCI_GETHOTSPOTACTIVEBACK
SCI_SETHOTSPOTACTIVEUNDERLINE(bool underline)
SCI_GETHOTSPOTACTIVEUNDERLINE
SCI_SETHOTSPOTSINGLELINE(bool singleLine)
SCI_GETHOTSPOTSINGLELINE
While the cursor hovers over text in a style with the hotspot attribute set, the default colouring can be modified and an underline drawn with these settings. Single line mode stops a hotspot from wrapping onto next line.

SCI_SETCONTROLCHARSYMBOL(int symbol)
SCI_GETCONTROLCHARSYMBOL
By default, Scintilla displays control characters (characters with codes less than 32) in a rounded rectangle as ASCII mnemonics: "NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL", "BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI", "DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB", "CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US". These mnemonics come from the early days of signaling, though some are still used (LF = Line Feed, BS = Back Space, CR = Carriage Return, for example).

You can choose to replace these mnemonics by a nominated symbol with an ASCII code in the range 32 to 255. If you set a symbol value less than 32, all control characters are displayed as mnemonics. The symbol you set is rendered in the font of the style set for the character. You can read back the current symbol with the SCI_GETCONTROLCHARSYMBOL message. The default symbol value is 0.

SCI_SETCARETSTICKY(int useCaretStickyBehaviour)
SCI_GETCARETSTICKY
SCI_TOGGLECARETSTICKY
These messages set, get or toggle the caretSticky setting which controls when the last position of the caret on the line is saved.

When set to SC_CARETSTICKY_OFF (0), the sticky flag is off; all text changes (and all caret position changes) will remember the caret's new horizontal position when moving to different lines. This is the default.

When set to SC_CARETSTICKY_ON (1), the sticky flag is on, and the only thing which will cause the editor to remember the horizontal caret position is moving the caret with mouse or keyboard (left/right arrow keys, home/end keys, etc).

When set to SC_CARETSTICKY_WHITESPACE (2), the caret acts like mode 0 (sticky off) except under one special case; when space or tab characters are inserted. (Including pasting only space/tabs -- undo, redo, etc. do not exhibit this behavior..).

SCI_TOGGLECARETSTICKY switches from SC_CARETSTICKY_ON and SC_CARETSTICKY_WHITESPACE to SC_CARETSTICKY_OFF and from SC_CARETSTICKY_OFF to SC_CARETSTICKY_ON.

Margins

There may be up to five margins, numbered 0 to SC_MAX_MARGIN (4) to the left of the text display, plus a gap either side of the text. Each margin can be set to display only symbols, line numbers, or text with SCI_SETMARGINTYPEN. Textual margins may also display symbols. The markers that can be displayed in each margin are set with SCI_SETMARGINMASKN. Any markers not associated with a visible margin will be displayed as changes in background colour in the text. A width in pixels can be set for each margin. Margins with a zero width are ignored completely. You can choose if a mouse click in a margin sends a SCN_MARGINCLICK notification to the container or selects a line of text.

The margins are numbered 0 to 4. Using a margin number outside the valid range has no effect. By default, margin 0 is set to display line numbers, but is given a width of 0, so it is hidden. Margin 1 is set to display non-folding symbols and is given a width of 16 pixels, so it is visible. Margin 2 is set to display the folding symbols, but is given a width of 0, so it is hidden. Of course, you can set the margins to be whatever you wish.

Styled text margins used to show revision and blame information:

Styled text margins used to show revision and blame information

SCI_SETMARGINTYPEN(int margin, int type)
SCI_GETMARGINTYPEN(int margin)
SCI_SETMARGINWIDTHN(int margin, int pixelWidth)
SCI_GETMARGINWIDTHN(int margin)
SCI_SETMARGINMASKN(int margin, int mask)
SCI_GETMARGINMASKN(int margin)
SCI_SETMARGINSENSITIVEN(int margin, bool sensitive)
SCI_GETMARGINSENSITIVEN(int margin)
SCI_SETMARGINCURSORN(int margin, int cursor)
SCI_GETMARGINCURSORN(int margin)
SCI_SETMARGINLEFT(<unused>, int pixels)
SCI_GETMARGINLEFT
SCI_SETMARGINRIGHT(<unused>, int pixels)
SCI_GETMARGINRIGHT
SCI_SETFOLDMARGINCOLOUR(bool useSetting, int colour)
SCI_SETFOLDMARGINHICOLOUR(bool useSetting, int colour)
SCI_MARGINSETTEXT(int line, char *text)
SCI_MARGINGETTEXT(int line, char *text)
SCI_MARGINSETSTYLE(int line, int style)
SCI_MARGINGETSTYLE(int line)
SCI_MARGINSETSTYLES(int line, char *styles)
SCI_MARGINGETSTYLES(int line, char *styles)
SCI_MARGINTEXTCLEARALL
SCI_MARGINSETSTYLEOFFSET(int style)
SCI_MARGINGETSTYLEOFFSET
SCI_SETMARGINOPTIONS(int marginOptions)
SCI_GETMARGINOPTIONS

SCI_SETMARGINTYPEN(int margin, int iType)
SCI_GETMARGINTYPEN(int margin)
These two routines set and get the type of a margin. The margin argument should be 0, 1, 2, 3 or 4. You can use the predefined constants SC_MARGIN_SYMBOL (0) and SC_MARGIN_NUMBER (1) to set a margin as either a line number or a symbol margin. A margin with application defined text may use SC_MARGIN_TEXT (4) or SC_MARGIN_RTEXT (5) to right justify the text. By convention, margin 0 is used for line numbers and the next two are used for symbols. You can also use the constants SC_MARGIN_BACK (2) and SC_MARGIN_FORE (3) for symbol margins that set their background colour to match the STYLE_DEFAULT background and foreground colours.

SCI_SETMARGINWIDTHN(int margin, int pixelWidth)
SCI_GETMARGINWIDTHN(int margin)
These routines set and get the width of a margin in pixels. A margin with zero width is invisible. By default, Scintilla sets margin 1 for symbols with a width of 16 pixels, so this is a reasonable guess if you are not sure what would be appropriate. Line number margins widths should take into account the number of lines in the document and the line number style. You could use something like SCI_TEXTWIDTH(STYLE_LINENUMBER, "_99999") to get a suitable width.

SCI_SETMARGINMASKN(int margin, int mask)
SCI_GETMARGINMASKN(int margin)
The mask is a 32-bit value. Each bit corresponds to one of 32 logical symbols that can be displayed in a margin that is enabled for symbols. There is a useful constant, SC_MASK_FOLDERS (0xFE000000 or -33554432), that is a mask for the 7 logical symbols used to denote folding. You can assign a wide range of symbols and colours to each of the 32 logical symbols, see Markers for more information. If (mask & SC_MASK_FOLDERS)==0, the margin background colour is controlled by style 33 (STYLE_LINENUMBER).

You add logical markers to a line with SCI_MARKERADD. If a line has an associated marker that does not appear in the mask of any margin with a non-zero width, the marker changes the background colour of the line. For example, suppose you decide to use logical marker 10 to mark lines with a syntax error and you want to show such lines by changing the background colour. The mask for this marker is 1 shifted left 10 times (1<<10) which is 0x400. If you make sure that no symbol margin includes 0x400 in its mask, any line with the marker gets the background colour changed.

To set a non-folding margin 1 use SCI_SETMARGINMASKN(1, ~SC_MASK_FOLDERS) which is the default set by Scintilla. To set a folding margin 2 use SCI_SETMARGINMASKN(2, SC_MASK_FOLDERS). ~SC_MASK_FOLDERS is 0x1FFFFFF in hexadecimal or 33554431 decimal. Of course, you may need to display all 32 symbols in a margin, in which case use SCI_SETMARGINMASKN(margin, -1).

SCI_SETMARGINSENSITIVEN(int margin, bool sensitive)
SCI_GETMARGINSENSITIVEN(int margin)
Each of the five margins can be set sensitive or insensitive to mouse clicks. A click in a sensitive margin sends a SCN_MARGINCLICK notification to the container. Margins that are not sensitive act as selection margins which make it easy to select ranges of lines. By default, all margins are insensitive.

SCI_SETMARGINCURSORN(int margin, int cursor)
SCI_GETMARGINCURSORN(int margin)
A reversed arrow cursor is normally shown over all margins. This may be changed to a normal arrow with SCI_SETMARGINCURSORN(margin, SC_CURSORARROW) or restored to a reversed arrow with SCI_SETMARGINCURSORN(margin, SC_CURSORREVERSEARROW).

SCI_SETMARGINLEFT(<unused>, int pixels)
SCI_GETMARGINLEFT
SCI_SETMARGINRIGHT(<unused>, int pixels)
SCI_GETMARGINRIGHT
These messages set and get the width of the blank margin on both sides of the text in pixels. The default is to one pixel on each side.

SCI_SETFOLDMARGINCOLOUR(bool useSetting, int colour)
SCI_SETFOLDMARGINHICOLOUR(bool useSetting, int colour)
These messages allow changing the colour of the fold margin and fold margin highlight. On Windows the fold margin colour defaults to ::GetSysColor(COLOR_3DFACE) and the fold margin highlight colour to ::GetSysColor(COLOR_3DHIGHLIGHT).

SCI_MARGINSETTEXT(int line, char *text)
SCI_MARGINGETTEXT(int line, char *text)
SCI_MARGINSETSTYLE(int line, int style)
SCI_MARGINGETSTYLE(int line)
SCI_MARGINSETSTYLES(int line, char *styles)
SCI_MARGINGETSTYLES(int line, char *styles)
SCI_MARGINTEXTCLEARALL
Text margins are created with the type SC_MARGIN_TEXT or SC_MARGIN_RTEXT. A different string may be set for each line with SCI_MARGINSETTEXT. The whole of the text margin on a line may be displayed in a particular style with SCI_MARGINSETSTYLE or each character may be individually styled with SCI_MARGINSETSTYLES which uses an array of bytes with each byte setting the style of the corresponding text byte similar to SCI_SETSTYLINGEX. Setting a text margin will cause a SC_MOD_CHANGEMARGIN notification to be sent.

Only some style attributes are active in text margins: font, size/sizeFractional, bold/weight, italics, fore, back, and characterSet.

SCI_MARGINSETSTYLEOFFSET(int style)
SCI_MARGINGETSTYLEOFFSET
Margin styles may be completely separated from standard text styles by setting a style offset. For example, SCI_MARGINSETSTYLEOFFSET(256) would allow the margin styles to be numbered from 256 upto 511 so they do not overlap styles set by lexers. Each style number set with SCI_MARGINSETSTYLE or SCI_MARGINSETSTYLES has the offset added before looking up the style.

Always call SCI_ALLOCATEEXTENDEDSTYLES before SCI_MARGINSETSTYLEOFFSET and use the result as the argument to SCI_MARGINSETSTYLEOFFSET.

SCI_SETMARGINOPTIONS(int marginOptions)
SCI_GETMARGINOPTIONS
Define margin options by enabling appropriate bit flags. At the moment, only one flag is available SC_MARGINOPTION_SUBLINESELECT=1, which controls how wrapped lines are selected when clicking on margin in front of them. If SC_MARGINOPTION_SUBLINESELECT is set only sub line of wrapped line is selected, otherwise whole wrapped line is selected. Margin options are set to SC_MARGINOPTION_NONE=0 by default.

Annotations

Annotations are read-only lines of text underneath each line of editable text. An annotation may consist of multiple lines separated by '\n'. Annotations can be used to display an assembler version of code for debugging or to show diagnostic messages inline or to line up different versions of text in a merge tool.

Annotations count as display lines for the methods SCI_VISIBLEFROMDOCLINE and SCI_DOCLINEFROMVISIBLE

Annotations used for inline diagnostics:

Annotations used for inline diagnostics

SCI_ANNOTATIONSETTEXT(int line, char *text)
SCI_ANNOTATIONGETTEXT(int line, char *text)
SCI_ANNOTATIONSETSTYLE(int line, int style)
SCI_ANNOTATIONGETSTYLE(int line)
SCI_ANNOTATIONSETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETLINES(int line)
SCI_ANNOTATIONCLEARALL
SCI_ANNOTATIONSETVISIBLE(int visible)
SCI_ANNOTATIONGETVISIBLE
SCI_ANNOTATIONSETSTYLEOFFSET(int style)
SCI_ANNOTATIONGETSTYLEOFFSET

SCI_ANNOTATIONSETTEXT(int line, char *text)
SCI_ANNOTATIONGETTEXT(int line, char *text)
SCI_ANNOTATIONSETSTYLE(int line, int style)
SCI_ANNOTATIONGETSTYLE(int line)
SCI_ANNOTATIONSETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETSTYLES(int line, char *styles)
SCI_ANNOTATIONGETLINES(int line)
SCI_ANNOTATIONCLEARALL
A different string may be set for each line with SCI_ANNOTATIONSETTEXT. To clear annotations call SCI_ANNOTATIONSETTEXT with a NULL pointer. The whole of the text ANNOTATION on a line may be displayed in a particular style with SCI_ANNOTATIONSETSTYLE or each character may be individually styled with SCI_ANNOTATIONSETSTYLES which uses an array of bytes with each byte setting the style of the corresponding text byte similar to SCI_SETSTYLINGEX. The text must be set first as it specifies how long the annotation is so how many bytes of styling to read. Setting an annotation will cause a SC_MOD_CHANGEANNOTATION notification to be sent.

The number of lines annotating a line can be retrieved with SCI_ANNOTATIONGETLINES. All the lines can be cleared of annotations with SCI_ANNOTATIONCLEARALL which is equivalent to clearing each line (setting to 0) and then deleting other memory used for this feature.

Only some style attributes are active in annotations: font, size/sizeFractional, bold/weight, italics, fore, back, and characterSet.

SCI_ANNOTATIONSETVISIBLE(int visible)
SCI_ANNOTATIONGETVISIBLE
Annotations can be made visible in a view and there is a choice of display style when visible. The two messages set and get the annotation display mode. The visible argument can be one of:

ANNOTATION_HIDDEN 0 Annotations are not displayed.
ANNOTATION_STANDARD 1 Annotations are drawn left justified with no adornment.
ANNOTATION_BOXED 2 Annotations are indented to match the text and are surrounded by a box.

SCI_ANNOTATIONSETSTYLEOFFSET(int style)
SCI_ANNOTATIONGETSTYLEOFFSET
Annotation styles may be completely separated from standard text styles by setting a style offset. For example, SCI_ANNOTATIONSETSTYLEOFFSET(512) would allow the annotation styles to be numbered from 512 upto 767 so they do not overlap styles set by lexers (or margins if margins offset is 256). Each style number set with SCI_ANNOTATIONSETSTYLE or SCI_ANNOTATIONSETSTYLES has the offset added before looking up the style.

Always call SCI_ALLOCATEEXTENDEDSTYLES before SCI_ANNOTATIONSETSTYLEOFFSET and use the result as the argument to SCI_ANNOTATIONSETSTYLEOFFSET.

Other settings

SCI_SETUSEPALETTE(bool allowPaletteUse)
SCI_GETUSEPALETTE
SCI_SETBUFFEREDDRAW(bool isBuffered)
SCI_GETBUFFEREDDRAW
SCI_SETTWOPHASEDRAW(bool twoPhase)
SCI_GETTWOPHASEDRAW
SCI_SETTECHNOLOGY(int technology)
SCI_GETTECHNOLOGY
SCI_SETFONTQUALITY(int fontQuality)
SCI_GETFONTQUALITY
SCI_SETCODEPAGE(int codePage)
SCI_GETCODEPAGE
SCI_SETKEYSUNICODE(bool keysUnicode)
SCI_GETKEYSUNICODE
SCI_SETWORDCHARS(<unused>, const char *characters)
SCI_GETWORDCHARS(<unused>, char *characters)
SCI_SETWHITESPACECHARS(<unused>, const char *characters)
SCI_GETWHITESPACECHARS(<unused>, char *characters)
SCI_SETPUNCTUATIONCHARS(<unused>, const char *characters)
SCI_GETPUNCTUATIONCHARS(<unused>, char *characters)
SCI_SETCHARSDEFAULT
SCI_GRABFOCUS
SCI_SETFOCUS(bool focus)
SCI_GETFOCUS

To forward a message (WM_XXXX, WPARAM, LPARAM) to Scintilla, you can use SendMessage(hScintilla, WM_XXXX, WPARAM, LPARAM) where hScintilla is the handle to the Scintilla window you created as your editor.

While we are on the subject of forwarding messages in Windows, the top level window should forward any WM_SETTINGCHANGE messages to Scintilla (this is currently used to collect changes to mouse settings, but could be used for other user interface items in the future).

SCI_SETBUFFEREDDRAW(bool isBuffered)
SCI_GETBUFFEREDDRAW
These messages turn buffered drawing on or off and report the buffered drawing state. Buffered drawing draws each line into a bitmap rather than directly to the screen and then copies the bitmap to the screen. This avoids flickering although it does take longer. The default is for drawing to be buffered.

SCI_SETTWOPHASEDRAW(bool twoPhase)
SCI_GETTWOPHASEDRAW
Two phase drawing is a better but slower way of drawing text. In single phase drawing each run of characters in one style is drawn along with its background. If a character overhangs the end of a run, such as in "V_" where the "V" is in a different style from the "_", then this can cause the right hand side of the "V" to be overdrawn by the background of the "_" which cuts it off. Two phase drawing fixes this by drawing all the backgrounds first and then drawing the text in transparent mode. Two phase drawing may flicker more than single phase unless buffered drawing is on. The default is for drawing to be two phase.

SCI_SETTECHNOLOGY(int technology)
SCI_GETTECHNOLOGY
The technology property allows choosing between different drawing APIs and options. On most platforms, the only choice is SC_TECHNOLOGY_DEFAULT (0). On Windows Vista or later, SC_TECHNOLOGY_DIRECTWRITE (1) can be chosen to use the Direct2D and DirectWrite APIs for higher quality antialiased drawing. Since Direct2D buffers drawing, Scintilla's buffering can be turned off with SCI_SETBUFFEREDDRAW(0).

SCI_SETFONTQUALITY(int fontQuality)
SCI_GETFONTQUALITY
Manage font quality (antialiasing method). Currently, the following values are available on Windows: SC_EFF_QUALITY_DEFAULT (backward compatible), SC_EFF_QUALITY_NON_ANTIALIASED, SC_EFF_QUALITY_ANTIALIASED, SC_EFF_QUALITY_LCD_OPTIMIZED.

In case it is necessary to squeeze more options into this property, only a limited number of bits defined by SC_EFF_QUALITY_MASK (0xf) will be used for quality.

SCI_SETCODEPAGE(int codePage)
SCI_GETCODEPAGE
Scintilla has some support for Japanese, Chinese and Korean DBCS. Use this message with codePage set to the code page number to set Scintilla to use code page information to ensure double byte characters are treated as one character rather than two. This also stops the caret from moving between the two bytes in a double byte character. Do not use this message to choose between different single byte character sets: it doesn't do that. Call with codePage set to zero to disable DBCS support. The default is SCI_SETCODEPAGE(0).

Code page SC_CP_UTF8 (65001) sets Scintilla into Unicode mode with the document treated as a sequence of characters expressed in UTF-8. The text is converted to the platform's normal Unicode encoding before being drawn by the OS and thus can display Hebrew, Arabic, Cyrillic, and Han characters. Languages which can use two characters stacked vertically in one horizontal space, such as Thai, will mostly work but there are some issues where the characters are drawn separately leading to visual glitches. Bi-directional text is not supported.

Code page can be set to 932 (Japanese Shift-JIS), 936 (Simplified Chinese GBK), 949 (Korean Unified Hangul Code), 950 (Traditional Chinese Big5), or 1361 (Korean Johab) although these may require installation of language specific support.

SCI_SETKEYSUNICODE(bool keysUnicode)
SCI_GETKEYSUNICODE
On Windows, character keys are normally handled differently depending on whether Scintilla is a wide or narrow character window with character messages treated as Unicode when wide and as 8 bit otherwise. Set this property to always treat as Unicode. This option is needed for Delphi.

SCI_SETWORDCHARS(<unused>, const char *characters)
Scintilla has several functions that operate on words, which are defined to be contiguous sequences of characters from a particular set of characters. This message defines which characters are members of that set. The character sets are set to default values before processing this function. For example, if you don't allow '_' in your set of characters use:
SCI_SETWORDCHARS(0, "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789");

SCI_GETWORDCHARS(<unused>, char *characters)
This fills the characters parameter with all the characters included in words. The characters parameter must be large enough to hold all of the characters. If the characters parameter is 0 then the length that should be allocated to store the entire set is returned.

SCI_SETWHITESPACECHARS(<unused>, const char *characters)
SCI_GETWHITESPACECHARS(<unused>, char *characters)
Similar to SCI_SETWORDCHARS, this message allows the user to define which chars Scintilla considers as whitespace. Setting the whitespace chars allows the user to fine-tune Scintilla's behaviour doing such things as moving the cursor to the start or end of a word; for example, by defining punctuation chars as whitespace, they will be skipped over when the user presses ctrl+left or ctrl+right. This function should be called after SCI_SETWORDCHARS as it will reset the whitespace characters to the default set. SCI_GETWHITESPACECHARS behaves similarly to SCI_GETWORDCHARS.

SCI_SETPUNCTUATIONCHARS(<unused>, const char *characters)
SCI_GETPUNCTUATIONCHARS(<unused>, char *characters)
Similar to SCI_SETWORDCHARS and SCI_SETWHITESPACECHARS, this message allows the user to define which chars Scintilla considers as punctuation. SCI_GETPUNCTUATIONCHARS behaves similarly to SCI_GETWORDCHARS.

SCI_SETCHARSDEFAULT
Use the default sets of word and whitespace characters. This sets whitespace to space, tab and other characters with codes less than 0x20, with word characters set to alphanumeric and '_'.

SCI_GRABFOCUS
SCI_SETFOCUS(bool focus)
SCI_GETFOCUS
Scintilla can be told to grab the focus with this message. This is needed more on GTK+ where focus handling is more complicated than on Windows.

The internal focus flag can be set with SCI_SETFOCUS. This is used by clients that have complex focus requirements such as having their own window that gets the real focus but with the need to indicate that Scintilla has the logical focus.

Brace highlighting

SCI_BRACEHIGHLIGHT(int pos1, int pos2)
SCI_BRACEBADLIGHT(int pos1)
SCI_BRACEHIGHLIGHTINDICATOR(bool useBraceHighlightIndicator, int indicatorNumber)
SCI_BRACEBADLIGHTINDICATOR(bool useBraceBadLightIndicator, int indicatorNumber)
SCI_BRACEMATCH(int position, int maxReStyle)

SCI_BRACEHIGHLIGHT(int pos1, int pos2)
Up to two characters can be highlighted in a 'brace highlighting style', which is defined as style number STYLE_BRACELIGHT (34). If you have enabled indent guides, you may also wish to highlight the indent that corresponds with the brace. You can locate the column with SCI_GETCOLUMN and highlight the indent with SCI_SETHIGHLIGHTGUIDE.

SCI_BRACEBADLIGHT(int pos1)
If there is no matching brace then the brace badlighting style, style STYLE_BRACEBAD (35), can be used to show the brace that is unmatched. Using a position of INVALID_POSITION (-1) removes the highlight.

SCI_BRACEHIGHLIGHTINDICATOR(bool useBraceHighlightIndicator, int indicatorNumber)
Use specified indicator to highlight matching braces instead of changing their style.

SCI_BRACEBADLIGHTINDICATOR(bool useBraceBadLightIndicator, int indicatorNumber)
Use specified indicator to highlight non matching brace instead of changing its style.

SCI_BRACEMATCH(int pos, int maxReStyle)
The SCI_BRACEMATCH message finds a corresponding matching brace given pos, the position of one brace. The brace characters handled are '(', ')', '[', ']', '{', '}', '<', and '>'. The search is forwards from an opening brace and backwards from a closing brace. If the character at position is not a brace character, or a matching brace cannot be found, the return value is -1. Otherwise, the return value is the position of the matching brace.

A match only occurs if the style of the matching brace is the same as the starting brace or the matching brace is beyond the end of styling. Nested braces are handled correctly. The maxReStyle parameter must currently be 0 - it may be used in the future to limit the length of brace searches.

Tabs and Indentation Guides

Indentation (the white space at the start of a line) is often used by programmers to clarify program structure and in some languages, for example Python, it may be part of the language syntax. Tabs are normally used in editors to insert a tab character or to pad text with spaces up to the next tab.

Scintilla can be set to treat tab and backspace in the white space at the start of a line in a special way: inserting a tab indents the line to the next indent position rather than just inserting a tab at the current character position and backspace unindents the line rather than deleting a character. Scintilla can also display indentation guides (vertical lines) to help you to generate code.

SCI_SETTABWIDTH(int widthInChars)
SCI_GETTABWIDTH
SCI_SETUSETABS(bool useTabs)
SCI_GETUSETABS
SCI_SETINDENT(int widthInChars)
SCI_GETINDENT
SCI_SETTABINDENTS(bool tabIndents)
SCI_GETTABINDENTS
SCI_SETBACKSPACEUNINDENTS(bool bsUnIndents)
SCI_GETBACKSPACEUNINDENTS
SCI_SETLINEINDENTATION(int line, int indentation)
SCI_GETLINEINDENTATION(int line)
SCI_GETLINEINDENTPOSITION(int line)
SCI_SETINDENTATIONGUIDES(int indentView)
SCI_GETINDENTATIONGUIDES
SCI_SETHIGHLIGHTGUIDE(int column)
SCI_GETHIGHLIGHTGUIDE

SCI_SETTABWIDTH(int widthInChars)
SCI_GETTABWIDTH
SCI_SETTABWIDTH sets the size of a tab as a multiple of the size of a space character in STYLE_DEFAULT. The default tab width is 8 characters. There are no limits on tab sizes, but values less than 1 or large values may have undesirable effects.

SCI_SETUSETABS(bool useTabs)
SCI_GETUSETABS
SCI_SETUSETABS determines whether indentation should be created out of a mixture of tabs and spaces or be based purely on spaces. Set useTabs to false (0) to create all tabs and indents out of spaces. The default is true. You can use SCI_GETCOLUMN to get the column of a position taking the width of a tab into account.

SCI_SETINDENT(int widthInChars)
SCI_GETINDENT
SCI_SETINDENT sets the size of indentation in terms of the width of a space in STYLE_DEFAULT. If you set a width of 0, the indent size is the same as the tab size. There are no limits on indent sizes, but values less than 0 or large values may have undesirable effects.

SCI_SETTABINDENTS(bool tabIndents)
SCI_GETTABINDENTS
SCI_SETBACKSPACEUNINDENTS(bool bsUnIndents)
SCI_GETBACKSPACEUNINDENTS

Inside indentation white space, the tab and backspace keys can be made to indent and unindent rather than insert a tab character or delete a character with the SCI_SETTABINDENTS and SCI_SETBACKSPACEUNINDENTS functions.

SCI_SETLINEINDENTATION(int line, int indentation)
SCI_GETLINEINDENTATION(int line)
The amount of indentation on a line can be discovered and set with SCI_GETLINEINDENTATION and SCI_SETLINEINDENTATION. The indentation is measured in character columns, which correspond to the width of space characters.

SCI_GETLINEINDENTPOSITION(int line)
This returns the position at the end of indentation of a line.

SCI_SETINDENTATIONGUIDES(int indentView)
SCI_GETINDENTATIONGUIDES
Indentation guides are dotted vertical lines that appear within indentation white space every indent size columns. They make it easy to see which constructs line up especially when they extend over multiple pages. Style STYLE_INDENTGUIDE (37) is used to specify the foreground and background colour of the indentation guides.

There are 4 indentation guide views. SC_IV_NONE turns the feature off but the other 3 states determine how far the guides appear on empty lines.

SC_IV_NONE No indentation guides are shown.
SC_IV_REAL Indentation guides are shown inside real indentation white space.
SC_IV_LOOKFORWARD Indentation guides are shown beyond the actual indentation up to the level of the next non-empty line. If the previous non-empty line was a fold header then indentation guides are shown for one more level of indent than that line. This setting is good for Python.
SC_IV_LOOKBOTH Indentation guides are shown beyond the actual indentation up to the level of the next non-empty line or previous non-empty line whichever is the greater. This setting is good for most languages.

SCI_SETHIGHLIGHTGUIDE(int column)
SCI_GETHIGHLIGHTGUIDE
When brace highlighting occurs, the indentation guide corresponding to the braces may be highlighted with the brace highlighting style, STYLE_BRACELIGHT (34). Set column to 0 to cancel this highlight.

Markers

There are 32 markers, numbered 0 to MARKER_MAX (31), and you can assign any combination of them to each line in the document. Markers appear in the selection margin to the left of the text. If the selection margin is set to zero width, the background colour of the whole line is changed instead. Marker numbers 25 to 31 are used by Scintilla in folding margins, and have symbolic names of the form SC_MARKNUM_*, for example SC_MARKNUM_FOLDEROPEN.

Marker numbers 0 to 24 have no pre-defined function; you can use them to mark syntax errors or the current point of execution, break points, or whatever you need marking. If you do not need folding, you can use all 32 for any purpose you wish.

Each marker number has a symbol associated with it. You can also set the foreground and background colour for each marker number, so you can use the same symbol more than once with different colouring for different uses. Scintilla has a set of symbols you can assign (SC_MARK_*) or you can use characters. By default, all 32 markers are set to SC_MARK_CIRCLE with a black foreground and a white background.

The markers are drawn in the order of their numbers, so higher numbered markers appear on top of lower numbered ones. Markers try to move with their text by tracking where the start of their line moves. When a line is deleted, its markers are combined, by an OR operation, with the markers of the previous line.

SCI_MARKERDEFINE(int markerNumber, int markerSymbols)
SCI_MARKERDEFINEPIXMAP(int markerNumber, const char *xpm)
SCI_RGBAIMAGESETWIDTH(int width)
SCI_RGBAIMAGESETHEIGHT(int height)
SCI_RGBAIMAGESETSCALE(int scalePercent)
SCI_MARKERDEFINERGBAIMAGE(int markerNumber, const char *pixels)
SCI_MARKERSYMBOLDEFINED(int markerNumber)
SCI_MARKERSETFORE(int markerNumber, int colour)
SCI_MARKERSETBACK(int markerNumber, int colour)
SCI_MARKERSETBACKSELECTED(int markerNumber, int colour)
SCI_MARKERENABLEHIGHLIGHT(int enabled)
SCI_MARKERSETALPHA(int markerNumber, int alpha)
SCI_MARKERADD(int line, int markerNumber)
SCI_MARKERADDSET(int line, int markerMask)
SCI_MARKERDELETE(int line, int markerNumber)
SCI_MARKERDELETEALL(int markerNumber)
SCI_MARKERGET(int line)
SCI_MARKERNEXT(int lineStart, int markerMask)
SCI_MARKERPREVIOUS(int lineStart, int markerMask)
SCI_MARKERLINEFROMHANDLE(int handle)
SCI_MARKERDELETEHANDLE(int handle)

SCI_MARKERDEFINE(int markerNumber, int markerSymbols)
This message associates a marker number in the range 0 to 31 with one of the marker symbols or an ASCII character. The general-purpose marker symbols currently available are:
SC_MARK_CIRCLE, SC_MARK_ROUNDRECT, SC_MARK_ARROW, SC_MARK_SMALLRECT, SC_MARK_SHORTARROW, SC_MARK_EMPTY, SC_MARK_ARROWDOWN, SC_MARK_MINUS, SC_MARK_PLUS, SC_MARK_ARROWS, SC_MARK_DOTDOTDOT, SC_MARK_BACKGROUND, SC_MARK_LEFTRECT, SC_MARK_FULLRECT, and SC_MARK_UNDERLINE.

The SC_MARK_BACKGROUND marker changes the background colour of the line only. The SC_MARK_FULLRECT symbol mirrors this, changing only the margin background colour. SC_MARK_UNDERLINE draws an underline across the text. The SC_MARK_EMPTY symbol is invisible, allowing client code to track the movement of lines. You would also use it if you changed the folding style and wanted one or more of the SC_FOLDERNUM_* markers to have no associated symbol.

Applications may use the marker symbol SC_MARK_AVAILABLE to indicate that plugins may allocate that marker number.

There are also marker symbols designed for use in the folding margin in a flattened tree style.
SC_MARK_BOXMINUS, SC_MARK_BOXMINUSCONNECTED, SC_MARK_BOXPLUS, SC_MARK_BOXPLUSCONNECTED, SC_MARK_CIRCLEMINUS, SC_MARK_CIRCLEMINUSCONNECTED, SC_MARK_CIRCLEPLUS, SC_MARK_CIRCLEPLUSCONNECTED, SC_MARK_LCORNER, SC_MARK_LCORNERCURVE, SC_MARK_TCORNER, SC_MARK_TCORNERCURVE, and SC_MARK_VLINE.

Characters can be used as markers by adding the ASCII value of the character to SC_MARK_CHARACTER (10000). For example, to use 'A' (ASCII code 65) as marker number 1 use:
SCI_MARKERDEFINE(1, SC_MARK_CHARACTER+65).

The marker numbers SC_MARKNUM_FOLDER and SC_MARKNUM_FOLDEROPEN are used for showing that a fold is present and open or closed. Any symbols may be assigned for this purpose although the (SC_MARK_PLUS, SC_MARK_MINUS) pair or the (SC_MARK_ARROW, SC_MARK_ARROWDOWN) pair are good choices. As well as these two, more assignments are needed for the flattened tree style: SC_MARKNUM_FOLDEREND, SC_MARKNUM_FOLDERMIDTAIL, SC_MARKNUM_FOLDEROPENMID, SC_MARKNUM_FOLDERSUB, and SC_MARKNUM_FOLDERTAIL. The bits used for folding are specified by SC_MASK_FOLDERS, which is commonly used as an argument to SCI_SETMARGINMASKN when defining a margin to be used for folding.

This table shows which SC_MARK_* symbols should be assigned to which SC_MARKNUM_* marker numbers to obtain four folding styles: Arrow (mimics Macintosh), plus/minus shows folded lines as '+' and opened folds as '-', Circle tree, Box tree.

SC_MARKNUM_* Arrow Plus/minus Circle tree Box tree
FOLDEROPEN ARROWDOWN MINUS CIRCLEMINUS BOXMINUS
FOLDER ARROW PLUS CIRCLEPLUS BOXPLUS
FOLDERSUB EMPTY EMPTY VLINE VLINE
FOLDERTAIL EMPTY EMPTY LCORNERCURVE LCORNER
FOLDEREND EMPTY EMPTY CIRCLEPLUSCONNECTED BOXPLUSCONNECTED
FOLDEROPENMID EMPTY EMPTY CIRCLEMINUSCONNECTED BOXMINUSCONNECTED
FOLDERMIDTAIL EMPTY EMPTY TCORNERCURVE TCORNER

SCI_MARKERDEFINEPIXMAP(int markerNumber, const char *xpm)
Markers can be set to pixmaps with this message. The XPM format is used for the pixmap. Pixmaps use the SC_MARK_PIXMAP marker symbol.

SCI_RGBAIMAGESETWIDTH(int width)
SCI_RGBAIMAGESETHEIGHT(int height)
SCI_RGBAIMAGESETSCALE(int scalePercent)
SCI_MARKERDEFINERGBAIMAGE(int markerNumber, const char *pixels)
Markers can be set to translucent pixmaps with this message. The RGBA format is used for the pixmap. The width and height must previously been set with the SCI_RGBAIMAGESETWIDTH and SCI_RGBAIMAGESETHEIGHT messages.

A scale factor in percent may be set with SCI_RGBAIMAGESETSCALE. This is useful on OS X with a retina display where each display unit is 2 pixels: use a factor of 200 so that each image pixel is dsplayed using a screen pixel. The default scale, 100, will stretch each image pixel to cover 4 screen pixels on a retina display.

Pixmaps use the SC_MARK_RGBAIMAGE marker symbol.

SCI_MARKERSYMBOLDEFINED(int markerNumber)
Returns the symbol defined for a markerNumber with SCI_MARKERDEFINE or SC_MARK_PIXMAP if defined with SCI_MARKERDEFINEPIXMAP or SC_MARK_RGBAIMAGE if defined with SCI_MARKERDEFINERGBAIMAGE.

SCI_MARKERSETFORE(int markerNumber, int colour)
SCI_MARKERSETBACK(int markerNumber, int colour)
These two messages set the foreground and background colour of a marker number.
SCI_MARKERSETBACKSELECTED(int markerNumber, int colour)
This message sets the highlight background colour of a marker number when its folding block is selected. The default colour is #FF0000.

SCI_MARKERENABLEHIGHLIGHT(bool enabled)
This message allows to enable/disable the highlight folding block when it is selected. (i.e. block that contains the caret)

SCI_MARKERSETALPHA(int markerNumber, int alpha)
When markers are drawn in the content area, either because there is no margin for them or they are of SC_MARK_BACKGROUND or SC_MARK_UNDERLINE types, they may be drawn translucently by setting an alpha value.

SCI_MARKERADD(int line, int markerNumber)
This message adds marker number markerNumber to a line. The message returns -1 if this fails (illegal line number, out of memory) or it returns a marker handle number that identifies the added marker. You can use this returned handle with SCI_MARKERLINEFROMHANDLE to find where a marker is after moving or combining lines and with SCI_MARKERDELETEHANDLE to delete the marker based on its handle. The message does not check the value of markerNumber, nor does it check if the line already contains the marker.

SCI_MARKERADDSET(int line, int markerMask)
This message can add one or more markers to a line with a single call, specified in the same "one-bit-per-marker" 32-bit integer format returned by SCI_MARKERGET (and used by the mask-based marker search functions SCI_MARKERNEXT and SCI_MARKERPREVIOUS). As with SCI_MARKERADD, no check is made to see if any of the markers are already present on the targeted line.

SCI_MARKERDELETE(int line, int markerNumber)
This searches the given line number for the given marker number and deletes it if it is present. If you added the same marker more than once to the line, this will delete one copy each time it is used. If you pass in a marker number of -1, all markers are deleted from the line.

SCI_MARKERDELETEALL(int markerNumber)
This removes markers of the given number from all lines. If markerNumber is -1, it deletes all markers from all lines.

SCI_MARKERGET(int line)
This returns a 32-bit integer that indicates which markers were present on the line. Bit 0 is set if marker 0 is present, bit 1 for marker 1 and so on.

SCI_MARKERNEXT(int lineStart, int markerMask)
SCI_MARKERPREVIOUS(int lineStart, int markerMask)
These messages search efficiently for lines that include a given set of markers. The search starts at line number lineStart and continues forwards to the end of the file (SCI_MARKERNEXT) or backwards to the start of the file (SCI_MARKERPREVIOUS). The markerMask argument should have one bit set for each marker you wish to find. Set bit 0 to find marker 0, bit 1 for marker 1 and so on. The message returns the line number of the first line that contains one of the markers in markerMask or -1 if no marker is found.

SCI_MARKERLINEFROMHANDLE(int markerHandle)
The markerHandle argument is an identifier for a marker returned by SCI_MARKERADD. This function searches the document for the marker with this handle and returns the line number that contains it or -1 if it is not found.

SCI_MARKERDELETEHANDLE(int markerHandle)
The markerHandle argument is an identifier for a marker returned by SCI_MARKERADD. This function searches the document for the marker with this handle and deletes the marker if it is found.

Indicators

Indicators are used to display additional information over the top of styling. They can be used to show, for example, syntax errors, deprecated names and bad indentation by drawing underlines under text or boxes around text. Originally, Scintilla stored indicator information in the style bytes but this has proved limiting, so now up to 32 separately stored indicators may be used. While style byte indicators currently still work, they will soon be removed so all the bits in each style byte can be used for lexical states.

Indicators may be displayed as simple underlines, squiggly underlines, a line of small 'T' shapes, a line of diagonal hatching, a strike-out or a rectangle around the text.

The SCI_INDIC* messa