// Scintilla source code edit control /** @file SplitVector.h ** Main data structure for holding arrays that handle insertions ** and deletions efficiently. **/ // Copyright 1998-2007 by Neil Hodgson // The License.txt file describes the conditions under which this software may be distributed. #ifndef SPLITVECTOR_H #define SPLITVECTOR_H #ifdef SCI_NAMESPACE namespace Scintilla { #endif template class SplitVector { protected: std::vector body; T empty; /// Returned as the result of out-of-bounds access. int lengthBody; int part1Length; int gapLength; /// invariant: gapLength == body.size() - lengthBody int growSize; /// Move the gap to a particular position so that insertion and /// deletion at that point will not require much copying and /// hence be fast. void GapTo(int position) { if (position != part1Length) { if (position < part1Length) { // Moving the gap towards start so moving elements towards end std::move_backward( body.data() + position, body.data() + part1Length, body.data() + gapLength + part1Length); } else { // position > part1Length // Moving the gap towards end so moving elements towards start std::move( body.data() + part1Length + gapLength, body.data() + gapLength + position, body.data() + part1Length); } part1Length = position; } } /// Check that there is room in the buffer for an insertion, /// reallocating if more space needed. void RoomFor(int insertionLength) { if (gapLength <= insertionLength) { while (growSize < static_cast(body.size() / 6)) growSize *= 2; ReAllocate(static_cast(body.size()) + insertionLength + growSize); } } void Init() { body.clear(); body.shrink_to_fit(); growSize = 8; lengthBody = 0; part1Length = 0; gapLength = 0; } public: /// Construct a split buffer. SplitVector() : empty() { Init(); } // Deleted so SplitVector objects can not be copied. SplitVector(const SplitVector &) = delete; void operator=(const SplitVector &) = delete; ~SplitVector() { } int GetGrowSize() const { return growSize; } void SetGrowSize(int growSize_) { growSize = growSize_; } /// Reallocate the storage for the buffer to be newSize and /// copy exisiting contents to the new buffer. /// Must not be used to decrease the size of the buffer. void ReAllocate(int newSize) { if (newSize < 0) throw std::runtime_error("SplitVector::ReAllocate: negative size."); if (newSize > static_cast(body.size())) { // Move the gap to the end GapTo(lengthBody); gapLength += newSize - static_cast(body.size()); // RoomFor implements a growth strategy but so does vector::resize so // ensure vector::resize allocates exactly the amount wanted by // calling reserve first. body.reserve(newSize); body.resize(newSize); } } /// Retrieve the element at a particular position. /// Retrieving positions outside the range of the buffer returns empty or 0. const T& ValueAt(int position) const { if (position < part1Length) { if (position < 0) { return empty; } else { return body[position]; } } else { if (position >= lengthBody) { return empty; } else { return body[gapLength + position]; } } } /// Set the element at a particular position. /// Setting positions outside the range of the buffer performs no assignment /// but asserts in debug builds. template void SetValueAt(int position, ParamType&& v) { if (position < part1Length) { PLATFORM_ASSERT(position >= 0); if (position < 0) { ; } else { body[position] = std::move(v); } } else { PLATFORM_ASSERT(position < lengthBody); if (position >= lengthBody) { ; } else { body[gapLength + position] = std::move(v); } } } /// Retrieve the element at a particular position. /// The position must be within bounds or an assertion is triggered. const T &operator[](int position) const { PLATFORM_ASSERT(position >= 0 && position < lengthBody); if (position < part1Length) { return body[position]; } else { return body[gapLength + position]; } } /// Retrieve reference to the element at a particular position. /// This, instead of the const variant, can be used to mutate in-place. /// The position must be within bounds or an assertion is triggered. T &operator[](int position) { PLATFORM_ASSERT(position >= 0 && position < lengthBody); if (position < part1Length) { return body[position]; } else { return body[gapLength + position]; } } /// Retrieve the length of the buffer. int Length() const { return lengthBody; } /// Insert a single value into the buffer. /// Inserting at positions outside the current range fails. void Insert(int position, T v) { PLATFORM_ASSERT((position >= 0) && (position <= lengthBody)); if ((position < 0) || (position > lengthBody)) { return; } RoomFor(1); GapTo(position); body[part1Length] = std::move(v); lengthBody++; part1Length++; gapLength--; } /// Insert a number of elements into the buffer setting their value. /// Inserting at positions outside the current range fails. void InsertValue(int position, int insertLength, T v) { PLATFORM_ASSERT((position >= 0) && (position <= lengthBody)); if (insertLength > 0) { if ((position < 0) || (position > lengthBody)) { return; } RoomFor(insertLength); GapTo(position); std::fill(body.data() + part1Length, body.data() + part1Length + insertLength, v); lengthBody += insertLength; part1Length += insertLength; gapLength -= insertLength; } } /// Add some new empty elements. /// InsertValue is good for value objects but not for unique_ptr objects /// since they can only be moved from once. void InsertEmpty(int position, int insertLength) { PLATFORM_ASSERT((position >= 0) && (position <= lengthBody)); if (insertLength > 0) { if ((position < 0) || (position > lengthBody)) { return; } RoomFor(insertLength); GapTo(position); for (int elem = part1Length; elem < part1Length + insertLength; elem++) { T emptyOne = {}; body[elem] = std::move(emptyOne); } lengthBody += insertLength; part1Length += insertLength; gapLength -= insertLength; } } /// Ensure at least length elements allocated, /// appending zero valued elements if needed. void EnsureLength(int wantedLength) { if (Length() < wantedLength) { InsertEmpty(Length(), wantedLength - Length()); } } /// Insert text into the buffer from an array. void InsertFromArray(int positionToInsert, const T s[], int positionFrom, int insertLength) { PLATFORM_ASSERT((positionToInsert >= 0) && (positionToInsert <= lengthBody)); if (insertLength > 0) { if ((positionToInsert < 0) || (positionToInsert > lengthBody)) { return; } RoomFor(insertLength); GapTo(positionToInsert); std::copy(s + positionFrom, s + positionFrom + insertLength, body.data() + part1Length); lengthBody += insertLength; part1Length += insertLength; gapLength -= insertLength; } } /// Delete one element from the buffer. void Delete(int position) { PLATFORM_ASSERT((position >= 0) && (position < lengthBody)); if ((position < 0) || (position >= lengthBody)) { return; } DeleteRange(position, 1); } /// Delete a range from the buffer. /// Deleting positions outside the current range fails. void DeleteRange(int position, int deleteLength) { PLATFORM_ASSERT((position >= 0) && (position + deleteLength <= lengthBody)); if ((position < 0) || ((position + deleteLength) > lengthBody)) { return; } if ((position == 0) && (deleteLength == lengthBody)) { // Full deallocation returns storage and is faster body.clear(); body.shrink_to_fit(); Init(); } else if (deleteLength > 0) { GapTo(position); lengthBody -= deleteLength; gapLength += deleteLength; } } /// Delete all the buffer contents. void DeleteAll() { DeleteRange(0, static_cast(lengthBody)); } /// Retrieve a range of elements into an array void GetRange(T *buffer, int position, int retrieveLength) const { // Split into up to 2 ranges, before and after the split then use memcpy on each. int range1Length = 0; if (position < part1Length) { const int part1AfterPosition = part1Length - position; range1Length = retrieveLength; if (range1Length > part1AfterPosition) range1Length = part1AfterPosition; } std::copy(body.data() + position, body.data() + position + range1Length, buffer); buffer += range1Length; position = static_cast(position + range1Length + gapLength); int range2Length = retrieveLength - range1Length; std::copy(body.data() + position, body.data() + position + range2Length, buffer); } /// Compact the buffer and return a pointer to the first element. T *BufferPointer() { RoomFor(1); GapTo(lengthBody); T emptyOne = {}; body[lengthBody] = std::move(emptyOne); return body.data(); } /// Return a pointer to a range of elements, first rearranging the buffer if /// needed to make that range contiguous. T *RangePointer(int position, int rangeLength) { if (position < part1Length) { if ((position + rangeLength) > part1Length) { // Range overlaps gap, so move gap to start of range. GapTo(position); return body.data() + position + gapLength; } else { return body.data() + position; } } else { return body.data() + position + gapLength; } } /// Return the position of the gap within the buffer. int GapPosition() const { return part1Length; } }; #ifdef SCI_NAMESPACE } #endif #endif