Age | Commit message (Collapse) | Author | Files | Lines |
|
teco-gtk-label.gob to plain C
* Using modern GObject idioms and macros greatly reduces the necessary boilerplate code.
* The plain C versions of our GObject classes are now "final" (cannot be derived)
This means we can hide the instance structures from the headers and avoid using
explicit private fields.
* Avoids some deprecation warnings when building the Gtk UI.
* GOB2 is apparently no longer maintained, so this seems like a good idea in the long run.
* The most important reason however is that there is no precompiled GOB2 for Windows
which prevents compilation on native Windows hosts, eg. during nightly builds.
This is even more important as Gtk+3 is distributed on Windows practically
exclusively via MSYS.
(ArchLinux contains MinGW gtk3 packages as well, so cross-compiling from ArchLinux
would have been an alternative.)
|
|
* Added a Freedesktop file - only as part of the debian package yet.
`make install` won't install a Desktop file since it would have to be
generated.
* Just like when installing manually, you can have a Curses and Gtk installation
side by side using the same .teco_ini.
* Common data between the Curses UI (sciteco-curses) and Gtk UI are in a new
architecture-independant package sciteco-common.
* The Gtk+ binaries are prefixed with `g` (gsciteco, gtedoc.tes, ggrosciteco.tes).
* Debian source and binary packages can be built using `./distribute.mk debian`
as usual.
It should also be possible to push everything to the PPA for the next release,
although that is not yet tested.
|
|
* required a new changelog entry since the target release is now v2.0.0
* Glib dependency bumped
|
|
This is a total conversion of SciTECO to plain C (GNU C11).
The chance was taken to improve a lot of internal datastructures,
fix fundamental bugs and lay the foundations of future features.
The GTK user interface is now in an useable state!
All changes have been squashed together.
The language itself has almost not changed at all, except for:
* Detection of string terminators (usually Escape) now takes
the string building characters into account.
A string is only terminated outside of string building characters.
In other words, you can now for instance write
I^EQ[Hello$world]$
This removes one of the last bits of shellisms which is out of
place in SciTECO where no tokenization/lexing is performed.
Consequently, the current termination character can also be
escaped using ^Q/^R.
This is used by auto completions to make sure that strings
are inserted verbatim and without unwanted sideeffects.
* All strings can now safely contain null-characters
(see also: 8-bit cleanliness).
The null-character itself (^@) is not (yet) a valid SciTECO
command, though.
An incomplete list of changes:
* We got rid of the BSD headers for RB trees and lists/queues.
The problem with them was that they used a form of metaprogramming
only to gain a bit of type safety. It also resulted in less
readble code. This was a C++ desease.
The new code avoids metaprogramming only to gain type safety.
The BSD tree.h has been replaced by rb3ptr by Jens Stimpfle
(https://github.com/jstimpfle/rb3ptr).
This implementation is also more memory efficient than BSD's.
The BSD list.h and queue.h has been replaced with a custom
src/list.h.
* Fixed crashes, performance issues and compatibility issues with
the Gtk 3 User Interface.
It is now more or less ready for general use.
The GDK lock is no longer used to avoid using deprecated functions.
On the downside, the new implementation (driving the Gtk event loop
stepwise) is even slower than the old one.
A few glitches remain (see TODO), but it is hoped that they will
be resolved by the Scintilla update which will be performed soon.
* A lot of program units have been split up, so they are shorter
and easier to maintain: core-commands.c, qreg-commands.c,
goto-commands.c, file-utils.h.
* Parser states are simply structs of callbacks now.
They still use a kind of polymorphy using a preprocessor trick.
TECO_DEFINE_STATE() takes an initializer list that will be
merged with the default list of field initializers.
To "subclass" states, you can simply define new macros that add
initializers to existing macros.
* Parsers no longer have a "transitions" table but the input_cb()
may use switch-case statements.
There are also teco_machine_main_transition_t now which can
be used to implement simple transitions. Additionally, you
can specify functions to execute during transitions.
This largely avoids long switch-case-statements.
* Parsers are embeddable/reusable now, at least in parse-only mode.
This does not currently bring any advantages but may later
be used to write a Scintilla lexer for TECO syntax highlighting.
Once parsers are fully embeddable, it will also be possible
to run TECO macros in a kind of coroutine which would allow
them to process string arguments in real time.
* undo.[ch] still uses metaprogramming extensively but via
the C preprocessor of course. On the downside, most undo
token generators must be initiated explicitly (theoretically
we could have used embedded functions / trampolines to
instantiate automatically but this has turned out to be
dangereous).
There is a TECO_DEFINE_UNDO_CALL() to generate closures for
arbitrary functions now (ie. to call an arbitrary function
at undo-time). This simplified a lot of code and is much
shorter than manually pushing undo tokens in many cases.
* Instead of the ridiculous C++ Curiously Recurring Template
Pattern to achieve static polymorphy for user interface
implementations, we now simply declare all functions to
implement in interface.h and link in the implementations.
This is possible since we no longer hace to define
interface subclasses (all state is static variables in
the interface's *.c files).
* Headers are now significantly shorter than in C++ since
we can often hide more of our "class" implementations.
* Memory counting is based on dlmalloc for most platforms now.
Unfortunately, there is no malloc implementation that
provides an efficient constant-time memory counter that
is guaranteed to decrease when freeing memory.
But since we use a defined malloc implementation now,
malloc_usable_size() can be used safely for tracking memory use.
malloc() replacement is very tricky on Windows, so we
use a poll thread on Windows. This can also be enabled
on other supported platforms using --disable-malloc-replacement.
All in all, I'm still not pleased with the state of memory
limiting. It is a mess.
* Error handling uses GError now. This has the advantage that
the GError codes can be reused once we support error catching
in the SciTECO language.
* Added a few more test suite cases.
* Haiku is no longer supported as builds are instable and
I did not manage to debug them - quite possibly Haiku bugs
were responsible.
* Glib v2.44 or later are now required.
The GTK UI requires Gtk+ v3.12 or later now.
The GtkFlowBox fallback and sciteco-wrapper workaround are
no longer required.
* We now extensively use the GCC/Clang-specific g_auto
feature (automatic deallocations when leaving the current
code block).
* Updated copyright to 2021.
SciTECO has been in continuous development, even though there
have been no commits since 2018.
* Since these changes are so significant, the target release has
been set to v2.0.
It is planned that beginning with v3.0, the language will be
kept stable.
|
|
|
|
* the new "?" (help) command can be used to look up
help topics.
* help topics are index from $SCITECOPATH/women/*.woman.tec
files.
* looking up a help topic opens the corresponding "womanpage"
and jumps to the position of the topic (it acts like an anchor
into the document).
* styling is performed by *.woman.tec files.
* Setting up the Scintilla view and munging the *.tec file
is performed by the new "woman.tes" lexer.
On supporting UIs (Gtk), womanpages are shown in a variable-width
font.
* Woman pages are usually not hand-written, but generated from manpages.
A special Groff post-processor grosciteco has been introduced for this
purpose. It is much like grotty, but can output SciTECO macros for styling
the document (ie. the *.woman.tec files).
It is documented in its own man-page.
* grosciteco also introduces sciteco.tmac - special Troff macros
for controlling the formatting of the document in SciTECO.
It also defines .SCITECO_TOPIC which can be used to mark up
help topics/terms in Troff markup.
* Woman pages are generated/formatted by grosciteco at compile-time, so
they will work on platforms without Groff (ie. as on windows).
* Groff has been added as a hard compile-time requirement.
* The sciteco(1) and sciteco(7) man pages have been augmented with
help topic anchors.
|
|
* Usually, Scintilla will now be built with -O2
* this can improve performance significantly over the standard Scintilla -Os
(up to 10%).
* this also allows link-time-optimizing both Scintilla and SciTECO
(which are linked statically) by adding -flto to CFLAGS, CXXFLAGS and LDFLAGS.
Link-time-optimization will both reduce the total binary size
and improve performance slightly since scintilla_send_message() can be
inlined.
An -O3 optimized Scintilla when linked with LTO results in an only 300kb
larger SciTECO binary.
* the highest possible optimization thus requires the following maintainer
flags on the ./configure command line:
CFLAGS="-O3 -mtune=native -march=native -flto"
CXXFLAGS="-O3 -mtune=native -march=native -flto"
LDFLAGS="-flto"
* Windows and Debian builds use link-time-optimization now.
On Windows - where we link in everything statically - building
the dependant libraries with -flto could improve performance
even more.
* Debian builds respect the default hardening flags of the build
server now. This should ensure that SciTECO is built for the
correct architecture at the recommended optimization level etc.
|
|
I'm not sure whether the syntax is correct, so this may need further
fixups
|
|
minimum version
* it was necessary to increase the upstream version so I could
upload new versions to launchpad while debugging PPA build issues.
* ChangeLog finalized for v0.6.4
* SciTECO requires at least libglib v2.28 (but that's only a guess)
|
|
* it also sets the compatibility level to 7 which was required
when building for Ubuntu Lucid. This version cannot be supported
however since its libglib version is too old.
|
|
|
|
|
|
this should simplify building SciTECO for new users
* compiler and archiver are passed down from Autoconf,
so cross-compiling should work transparently
* `make clean` will also clean the Scintilla source tree
* there is no longer any need for "source bundles" as
tar balls also contain Scintilla/Scinterm now
* building from Git is not much more difficult than building
from a tar ball
* The versions of Scintilla/Scinterm embedded as submodules
already contain all the patches necessary (currently none are
necessary), so there's no need to have patch files in the
repository
* INSTALL instructions have been rewritten
* the --with-scintilla and --with-scinterm site-config options
have been kept. But they should be rarely necessary now.
|
|
|
|
|
|
* allows us to remove most patches. One however is still necessary
(Scinterm Makefile bug!)
* TECO-style control code echoing is now set up using the SCI_SETREPRESENTATION message
* updated copyrights
* updated TODO
|
|
|
|
|
|
|
|
|
|
* distributed binary packages are standard debian packages
* ./distribute might fix up the package version and branch for Ubuntu/PPA
|
|
so no additional --with-scintilla is necessary when building from
a source bundle
|
|
* prepared for upload to Ubuntu PPA
* debian package will not be in autoconf source distro
* will only build as a non-native package based on a source bundle
that contains scintilla, scinterm and has patches applied
|