Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
|
|
* Due to recent changes, you now have to type S^Q^Q^^$ since
the ASCII caret (94) is interpreted as a pattern match character.
|
|
* makes it possible, albeit cumbersome, to escape pattern match characters
* For instance, to search for ^Q, you now have to type
S^Q^Q^Q^Q$.
To search for ^E you have to type
S^Q^Q^Q^E$.
But the last character cannot be typed with carets currently (FIXME?).
For pattern-only characters, two ^Q should be sufficient as in
S^Q^Q^X$.
* Perhaps it would be more elegant to abolish the difference between string building
and pattern matching characters to avoid double quoting.
But then all string building constructs like ^EQq should operate at the pattern level
as well (ie. match the contents of register q verbatim instead of being interpreted as a pattern).
TECOC and TECO-64 don't do that either.
If we leave everything as it is, at least a new string building construct should be added for
auto-quoting patterns (analoguous to ^EN and ^E@).
|
|
* This allows you to type ^Q^U (which would otherwise rub out the entire argument)
and ^Q^W (which would otherwise rub out the ^Q).
* ^Q^U coincidentally worked previously since the teco_state_stringbuilding_escaped
state would default to teco_state_process_edit_cmd().
But it's better to make this feauture explicit.
* This finally makes it possible to insert the ^W (23) char into a buffer.
In interactive mode, you can still only type Caret+W as a string building construct.
* ^G could also be inhibited after ^Q, but the control char is not used anywhere yet,
so there is no point in doing that.
|
|
* The XTerm version is still checked if we detect running under XTerm.
* Actually, the XTerm implementation is broken for Unicode clipboard contents.
* Kitty supports OSC-52, but you __must__ enable read-clipboard.
With read-clipboard-ask, there will be a timeout.
But we cannot read without a timeout since otherwise we would hang indefinitely
if the escape sequence turns out to not work.
* For urxvt, I have hacked an existing extension:
https://gist.github.com/rhaberkorn/d7406420b69841ebbcab97548e38b37d
* st currently supports only setting the clipboard, but not querying it.
|
|
all expansions of ^EQq, ^EUq and so on
* Previously, there was no way to enter upper-case mode in interactive commands since
the Ctrl+W immediate editing command is interpreted everywhere.
* Without the case folding of ^EQq/^EUq results, the upper and lower case modes are actually pretty useless
considering that modern keyboards have caps lock.
So it was clear we need this, regardless of what the classic TECOs did.
The TECO-11 manual is not very clear on this.
tecoc apparently does not case-fold ^EQq results.
* This opens up new idioms, for instance
`EUq^W^W^EQq$` in order to upper case register q.
It's also the only way you can currently upper-case Unicode codepoints.
|
|
* Ctrl+^ (30) and Caret+caret (^^) were both translated to a single caret.
While there might be some reason to keep this behavior for double-caret,
it is certainly pointless for Ctrl+^.
* That gives you an easy way to insert Ctrl+^ (code 30) into documents with <I>.
Perviously, you either had to insert a double-caret, typing 4 carets in a row,
or you had to use <EI> or 30I$.
* The special handling of double-caret could perhaps be abolished altogether,
as we also have ^Q^ to escape plain carets.
The double-caret syntax is very archaic from the time that there was no proper
^Q as far as I recall correctly.
|
|
|
|
* character-based model, avoid mentioning "ASCII code"
* added "0EE" example
* should be built with pdfmom, so it's built with gropdf
|
|
* Unfortunately, the list in sciteco(7) does not format with FreeBSD's man or
within SciTECO.
* Removed references to the old sciteco.sf.net.
We don't have a proper "homepage" for the time being.
|
|
* Practically requires one of the "Nerd Font" fonts,
so it's disabled by default.
Add 0,512ED to the profile to enable them.
* The new ED flag could be used to control Gtk icons as well,
but they are left always-enabled for the time being.
Is there any reason anybody would like to disable icons in Gtk?
* The list of icons has been adapted and extended from exa:
https://github.com/ogham/exa/blob/master/src/output/icons.rs
* The icons are hardcoded as presorted lists,
so we can binary search them.
This could change in the future. If there is any demand,
they could be made configurable via Q-Registers as well.
|
|
* ALL keypresses (the UTF-8 sequences resulting from key presses) can now be remapped.
* This is especially useful with Unicode support, as you might want to alias
international characters to their corresponding latin form in the start state,
so you don't have to change keyboard layouts so often.
This is done automatically in Gtk, where we have hardware key press information,
but has to be done with key macros in Curses.
There is a new key mask 4 (bit 3) for that purpose now.
* Also, you might want to define non-ANSI letters to perform special functions in
the start state where it won't be accepted by the parser anyway.
Suppose you have a macro M→, you could define
@^U[^K→]{m→} 1^_U[^K→]
This effectively "extends" the parser and allow you to call macro "→" by a single
key press. See also #5.
* The register prefix has been changed from ^F (for function) to ^K (for key).
This is the only thing you have to change in order to migrate existing
function key macros.
* Key macros are enabled by default. There is no longer any way to disable
function key handling in curses, as I never found any reason or need to disable it.
Theoretically, the default ESCDELAY could turn out to be too small and function
keys don't get through. I doubt that's possible unless on extremely slow serial lines.
Even then, you'd have to increase ESCDELAY and instead of disabling function keys
simply define an escape surrogate.
* The ED flag has been removed and its place is reserved for a future mouse support flag
(which does make sense to disable in curses sometimes).
fnkeys.tes is consequently also enabled by default in sample.teco_ini.
* Key macros are handled as an unit. If one character results in an error,
the entire string is rubbed out.
This fixes the "CLOSE" key on Gtk.
It also makes sure that the original error message is preserved and not overwritten
by some subsequent syntax error.
It was never useful that we kept inserting characters after the first error.
|
|
The following rules apply:
* All SciTECO macros __must__ be in valid UTF-8, regardless of the
the register's configured encoding.
This is checked against before execution, so we can use glib's non-validating
UTF-8 API afterwards.
* Things will inevitably get slower as we have to validate all macros first
and convert to gunichar for each and every character passed into the parser.
As an optimization, it may make sense to have our own inlineable version of
g_utf8_get_char() (TODO).
Also, Unicode glyphs in syntactically significant positions may be case-folded -
just like ASCII chars were. This is is of course slower than case folding
ASCII. The impact of this should be measured and perhaps we should restrict
case folding to a-z via teco_ascii_toupper().
* The language itself does not use any non-ANSI characters, so you don't have to
use UTF-8 characters.
* Wherever the parser expects a single character, it will now accept an arbitrary
Unicode/UTF-8 glyph as well.
In other words, you can call macros like M§ instead of having to write M[§].
You can also get the codepoint of any Unicode character with ^^x.
Pressing an Unicode character in the start state or in Ex and Fx will now
give a sane error message.
* When pressing a key which produces a multi-byte UTF-8 sequence, the character
gets translated back and forth multiple times:
1. It's converted to an UTF-8 string, either buffered or by IME methods (Gtk).
On Curses we could directly get a wide char using wget_wch(), but it's
not currently used, so we don't depend on widechar curses.
2. Parsed into gunichar for passing into the edit command callbacks.
This also validates the codepoint - everything later on can assume valid
codepoints and valid UTF-8 strings.
3. Once the edit command handling decides to insert the key into the command line,
it is serialized back into an UTF-8 string as the command line macro has
to be in UTF-8 (like all other macros).
4. The parser reads back gunichars without validation for passing into
the parser callbacks.
* Flickering in the Curses UI and Pango warnings in Gtk, due to incompletely
inserted and displayed UTF-8 sequences, are now fixed.
|
|
|
|
* When enabled with bit 2 in the ED flags (0,4ED),
all registers and buffers will get the raw ANSI encoding (as if 0EE had been
called on them).
You can still manually change the encoding, eg. by calling 65001EE afterwards.
* Also the ANSI mode sets up character representations for all bytes >= 0x80.
This is currently done only depending on the ED flag, not when setting 0EE.
* Since setting 16,4ED for 8-bit clean editing in a macro can be tricky -
the default unnamed buffer will still be at UTF-8 and at least a bunch
of environment registers as well - we added the command line option
`--8bit` (short `-8`) which configures the ED flags very early on.
As another advantage you can mung the profile in 8-bit mode as well
when using SciTECO as a sort of interactive hex editor.
* Disable UTF-8 checks in 8-bit clean mode (sample.teco_ini).
|
|
|
|
or codepoints) (refs #5)
* This is trickier than it sounds because there isn't one single place to consult.
It depends on the context.
If the string argument relates to buffer contents - as in <I>, <S>, <FR> etc. -
the buffer's encoding is consulted.
If it goes into a register (EU), the register's encoding is consulted.
Everything else (O, EN, EC, ES...) expects only Unicode codepoints.
* This is communicated through a new field teco_machine_stringbuilding_t::codepage
which must be set in the states' initial callback.
* Seems overkill just for ^EUq, but it can be used for context-sensitive
processing of all the other string building constructs as well.
* ^V and ^W cannot be supported for Unicode characters for the time being without an Unicode-aware parser
|
|
* This will naturally work with both ASCII characters and various
non-English scripts.
* Unfortunately, it cannot work with the other non-ANSI single-byte codepages.
* If we'd like to support scripts working with all sorts of codepoints,
we'd have to introduce a new command for translating individual codepoints
from the current codepage (as reported by EE) to Unicode.
|
|
* All manpages are processed with the "utf8" device and with preconv.
Manpage sources can contain Unicode glyphs now.
* grosciteco supports CuXXXX and N commands now
* Lines are drawn with Unicode box characters now.
This works at least with tbl and -Tutf8.
It's probably still too simplistic for pic graphics.
* The topic list at the top of .woman.tec contain byte offsets,
so that we don't need glyphs2bytes conversion when looking up topics.
|
|
* It's generally a bad idea to pass backslashes as a glyph in macro arguments, even as `\\`
since this could easily be interpreted as an escape.
* Instead we now always use `\[rs]`.
|
|
* This is the same variable used by gtk3-nocsd, but we will now work
even without preloading any libraries.
Also, it turns out that gtk3-nocsd does not ship as a FreeBSD port
and hasn't been updated in a long time.
* Setting this in .teco_ini wouldn't have been easy since the
teco_interface_init() is called before any TECO code.
Also, you might not even want disable this globally but depending
on the window manager.
* Therefore, you are advised to `export GTK_CSD=0` in ~/.xsession.
* The --no-csd command line option is kept for the time being,
but probably serves no more purpose.
|
|
* was introduced in e7867fb0
|
|
|
|
* This is supposed to allow new users without any prior exposure to SciTECO
to pick up the basics of practical usage of SciTECO as an editor.
It almost does not elaborate on scripting-side of things.
* This requires a full Groff installation, so the document is not built by default.
|
|
* This is also the base of $SCITECOPATH.
* Changing it is useful for packaging where it is not possible to factor out the common
files between Curses and Gtk builds into a "sciteco-common" package.
As an alternative, you can now create disjunct sciteco-curses and sciteco-gtk packages.
* You will most likely want to use this for Gtk builds as in:
--with-interface=gtk --program-prefix=g --with-scitecodatadir=/usr/local/share/gsciteco.
|
|
* .SCITECO_TT should be before .EX, so that the indent is already monospaced.
.SCITECO_TT_END still needs to be before .EE however, so that the next
non-monospaced line is not "typeset" with a monospaced indent.
* naturally only affects the Gtk UI
|
|
* Courier has the quirk that letter sequences like "fi" are turned into ligatures
which breaks the monospaced nature of the display.
* We assume that "Monospace" is also more portable, although it hasn't yet been tested on Windows.
* only relevant for the Gtk UI of course
* It might be a good idea to set SCI_STYLESETCHECKMONOSPACED as well (FIXME?)
|
|
* Hopefully disables paragraph breaking in newer Groff versions,
but needs to be tested.
|
|
* The intermediate output of Groff will contain `t` commands before the
font 1 is defined which we interpret as the default font.
We therefore hardcode the default-font position to 1 by default - it won't change anyway.
|
|
* fixes test cases like 3<%a:>
* you can now use :F< in pass-through loops as well
* F> outside of loops will now exit the current macro level.
This is analogous to what TECO-11 did.
In interactive mode, F> is currently also equivalent to $$
(terminates command line).
|
|
|
|
with Unix linebreaks
* when hosted on Windows, the default is DOS linebreaks
* Unix linebreaks are in many cases more consistent as all other sources use Unix linebreaks
* woman pages with Unix linebreaks are slightly faster to load due to EOL conversion
* especially Groff input must not contain CR as it will otherwise log lots of warnings
(affects htbl.tes and tedoc.tes).
|
|
* Environment variables are case insensitive on Windows
while SciTECO variables are case sensitive.
We must therefore make sure that we first unset any $COMSPEC or $ComSpec
from the environment before resetting it, thereby fixing its case.
* Fixes command execution via <EC> on systems where the variable
was not called $ComSpec.
|
|
* There are currently build errors with the message
"fatal: ambiguous argument 'graph_legend.dox': unknown revision or path not in the working tree."
But it does not seem to affect the overall result and "make devdoc" does not fail.
|
|
This is a total conversion of SciTECO to plain C (GNU C11).
The chance was taken to improve a lot of internal datastructures,
fix fundamental bugs and lay the foundations of future features.
The GTK user interface is now in an useable state!
All changes have been squashed together.
The language itself has almost not changed at all, except for:
* Detection of string terminators (usually Escape) now takes
the string building characters into account.
A string is only terminated outside of string building characters.
In other words, you can now for instance write
I^EQ[Hello$world]$
This removes one of the last bits of shellisms which is out of
place in SciTECO where no tokenization/lexing is performed.
Consequently, the current termination character can also be
escaped using ^Q/^R.
This is used by auto completions to make sure that strings
are inserted verbatim and without unwanted sideeffects.
* All strings can now safely contain null-characters
(see also: 8-bit cleanliness).
The null-character itself (^@) is not (yet) a valid SciTECO
command, though.
An incomplete list of changes:
* We got rid of the BSD headers for RB trees and lists/queues.
The problem with them was that they used a form of metaprogramming
only to gain a bit of type safety. It also resulted in less
readble code. This was a C++ desease.
The new code avoids metaprogramming only to gain type safety.
The BSD tree.h has been replaced by rb3ptr by Jens Stimpfle
(https://github.com/jstimpfle/rb3ptr).
This implementation is also more memory efficient than BSD's.
The BSD list.h and queue.h has been replaced with a custom
src/list.h.
* Fixed crashes, performance issues and compatibility issues with
the Gtk 3 User Interface.
It is now more or less ready for general use.
The GDK lock is no longer used to avoid using deprecated functions.
On the downside, the new implementation (driving the Gtk event loop
stepwise) is even slower than the old one.
A few glitches remain (see TODO), but it is hoped that they will
be resolved by the Scintilla update which will be performed soon.
* A lot of program units have been split up, so they are shorter
and easier to maintain: core-commands.c, qreg-commands.c,
goto-commands.c, file-utils.h.
* Parser states are simply structs of callbacks now.
They still use a kind of polymorphy using a preprocessor trick.
TECO_DEFINE_STATE() takes an initializer list that will be
merged with the default list of field initializers.
To "subclass" states, you can simply define new macros that add
initializers to existing macros.
* Parsers no longer have a "transitions" table but the input_cb()
may use switch-case statements.
There are also teco_machine_main_transition_t now which can
be used to implement simple transitions. Additionally, you
can specify functions to execute during transitions.
This largely avoids long switch-case-statements.
* Parsers are embeddable/reusable now, at least in parse-only mode.
This does not currently bring any advantages but may later
be used to write a Scintilla lexer for TECO syntax highlighting.
Once parsers are fully embeddable, it will also be possible
to run TECO macros in a kind of coroutine which would allow
them to process string arguments in real time.
* undo.[ch] still uses metaprogramming extensively but via
the C preprocessor of course. On the downside, most undo
token generators must be initiated explicitly (theoretically
we could have used embedded functions / trampolines to
instantiate automatically but this has turned out to be
dangereous).
There is a TECO_DEFINE_UNDO_CALL() to generate closures for
arbitrary functions now (ie. to call an arbitrary function
at undo-time). This simplified a lot of code and is much
shorter than manually pushing undo tokens in many cases.
* Instead of the ridiculous C++ Curiously Recurring Template
Pattern to achieve static polymorphy for user interface
implementations, we now simply declare all functions to
implement in interface.h and link in the implementations.
This is possible since we no longer hace to define
interface subclasses (all state is static variables in
the interface's *.c files).
* Headers are now significantly shorter than in C++ since
we can often hide more of our "class" implementations.
* Memory counting is based on dlmalloc for most platforms now.
Unfortunately, there is no malloc implementation that
provides an efficient constant-time memory counter that
is guaranteed to decrease when freeing memory.
But since we use a defined malloc implementation now,
malloc_usable_size() can be used safely for tracking memory use.
malloc() replacement is very tricky on Windows, so we
use a poll thread on Windows. This can also be enabled
on other supported platforms using --disable-malloc-replacement.
All in all, I'm still not pleased with the state of memory
limiting. It is a mess.
* Error handling uses GError now. This has the advantage that
the GError codes can be reused once we support error catching
in the SciTECO language.
* Added a few more test suite cases.
* Haiku is no longer supported as builds are instable and
I did not manage to debug them - quite possibly Haiku bugs
were responsible.
* Glib v2.44 or later are now required.
The GTK UI requires Gtk+ v3.12 or later now.
The GtkFlowBox fallback and sciteco-wrapper workaround are
no longer required.
* We now extensively use the GCC/Clang-specific g_auto
feature (automatic deallocations when leaving the current
code block).
* Updated copyright to 2021.
SciTECO has been in continuous development, even though there
have been no commits since 2018.
* Since these changes are so significant, the target release has
been set to v2.0.
It is planned that beginning with v3.0, the language will be
kept stable.
|
|
* avoid warnings
* make sure Doxygen finds RBEntryOwnString
* it would be nice to strip the top level `SciTECO` namespace
but this is not supported without some macro magic that
ommit the namespace declaration when processing with
Doxygen.
|
|
* automatic conversion with `doxygen -u`
|
|
* when enabled, it will automatically upper-case all
one or two letter commands (which are case insensitive).
* also affects the up-carret control commands, so they when inserted
they look more like real control commands.
* specifically does not affect case-insensitive Q-Register specifications
* the result are command lines that are better readable and conform
to the coding style used in SciTECO's standard library.
This eases reusing command lines as well.
* Consequently, string-building and pattern match characters should
be case-folded as well, but they aren't currently since
State::process_edit_cmd() does not have sufficient insight
into the MicroStateMachines. Also, it could not be delegated
to the MicroStateMachines.
Perhaps they should be abandoned in favour of embeddedable
regular state machines; or regular state machines with a stack
of return states?
|
|
* especially to improve building on FreeBSD 11
* We need GNU Make, yet alone because Scintilla/Scinterm
needs it. We now document that dependency and added
an Autoconf check from the autoconf-archive.
We make sure that the build process is invoked with GNU make
by generating only GNUmakefiles.
The Makefile.am files have not been renamed, so this
change can be rolled back easily.
* Some GNU-Make-specific autoreconf warnings have still been
resolved. But not all of them, as this would have been
unelegant and we need GNU Make anyway.
* Declare ACLOCAL_AMFLAGS to appease autoreconf
* Added an explicit check for C++11 from the autoconf-archives.
In general we should support building with every C++11 compiler
that is sufficiently GNU-like.
* Do not use `sed` for inplace editing, as different sed-implementations
have mutually incompatible syntax for this.
Instead of declaring and checking a dependency on GNU sed,
we simply use SciTECO for the editing task.
This improves code portability on BSDs.
* Similarily, BSD/POSIX `cmp` is supported now.
This fixes the test suite on BSD without declaring a
dependency on the GNU coreutils.
* Simplified sciteco-wrapper generation.
|
|
* fixes manpages, Groff warnings and building
womanpages for older Groff versions.
Groff v1.19 is in use eg. on FreeBSD 11.
* tbl v1.19 has different column specifiers than
on later versions. `X` cannot be used for expanded
columns in these Groff versions.
|
|
|
|
|
|
* equivalent to `xF` and currently ignored by grosciteco.
* older versions of Groff use `F` instead of `xF`, even though it
is not documented. Therefore this fixes building on systems
with slightly outdated versions of Groff like Haiku and OS X.
|
|
* we had an undocumented dependency on Groff v1.20, since
this version introduced the .device request.
* this broke the womanpage generation e.g. on OS X 10.6.
Even newer versions of OS X only appear to ship Groff v1.19.
* Since it makes sense to support the Groff shipping with OS X,
we work around this issue by reimplementing .device on platforms
that lack it.
* The fallback implementation still has subtle differences to
the real .device, but they are acceptable for the time being.
|
|
* fixes formatting of sciteco.7.html
* it is still not ideal since tables with rule="none" can only get
row borders by adding them to the table cells.
Perhaps the entire border handling should be done with CSS.
|
|
performance issues with memory measurements
* Fixed build problems on Windows
* g_slice on Windows has been shown to be of little use either
and it does not work well with the GetProcessMemoryInfo()
measurements.
Also, it brings the same problem as on Glibc: Not even command-line
termination returns the memory to the OS.
Therefore, we don't use g_slice at all and commented on it.
* The custom Linux and Windows memory measurement approaches
have been shown to be inefficient.
As a workaround, scripts disable memory limiting.
* A better approach -- but it will only work on Glibc -- might
be to hook into malloc(), realloc() and free() globally
and use the malloc_usable_size() of a heap object for
memory measurements. This will be relatively precise and cheap.
* We still need the "Object" base class in order to measure
memory usage as a fallback approach.
|
|
* Using a common implementation in RBTreeString::auto_complete().
This is very efficient even for very huge tables since only
an O(log(n)) lookup is required and then all entries with a matching
prefix are iterated. Worst-case complexity is still O(n), since all
entries may be legitimate completions.
If necessary, the number of matching entries could be restricted, though.
* Auto completes short and long Q-Reg names.
Short names are "case-insensitive" (since they are upper-cased).
Long specs are terminated with a closing bracket.
* Long spec completions may have problems with names containing
funny characters since they may be misinterpreted as string building
characters or contain braces. All the auto-completions suffered from
this problem already (see TODO).
* This greatly simplifies investigating the Q-Register name spaces
interactively and e.g. calling macros with long names, inserting
environment registers etc.
* Goto labels are terminated with commas since they may be part
of a computed goto.
* Help topics are matched case insensitive (just like the topic
lookup itself) and are terminated with the escape character.
This greatly simplifies navigating womanpages and looking up
topics with long names.
|
|
called tedoc.tes
* some code simplifications
* it now supports command line arguments via getopt.tes.
* the -C flag enabled C/C++ mode.
By default tedoc parses SciTECO code which means it can be used
to document macro packages as well.
* Therefore it is installed as a separate tool now.
It may be used as a Groff preprocessor for third-party macro
authors to generate (wo)man pages.
* there's a man page tedoc.tes(1)
* The troff placeholder macro is now called ".TEDOC".
* Help topics can now be specified after the starting comment /*$ or !*$.
Topics have been defined for all built-in commands.
|