Age | Commit message (Collapse) | Author | Files | Lines |
|
commands with multiple string arguments
* When `@`-modifying a command with several string arguments and choosing `{` as the alternative
string termination character, the parser would get totally confused.
Any sequence of `{` would be ignored and only the first non-`{` would become the termination character.
Consequently you also couldn't choose a new terminator after the closing `}`.
So even a documented code example from sciteco(7) wouldn't work.
The same was true when using $ (escape) or ^A as the alternative termination character.
* We can now correctly parse e.g. `@FR{foo}{bar}` or `@FR$foo$bar$` (even though the
latter one is quite pointless).
* has probably been broken forever (has been broken even before v2.0).
* Whitespace is now ignored in front of alternative termination characters as in TECO-64, so
we can also write `@S /foo/` or even
```
@^Um
{
!* blabla *!
}
```
I wanted to disallow whitespace termination characters, so the alternative would have been
to throw an error.
The new implementation at least adds some functionality.
* Avoid redundancies when parsing no-op characters via teco_is_noop().
I assume that this is inlined and drawn into any jump-table what would be
generated for the switch-statement in teco_state_start_input().
* Alternative termination characters are still case-folded, even if they are Unicode glyphs,
so `@IЖfooж` would work and insert `foo`.
This should perhaps be restricted to ANSI characters?
|
|
* Added some keywords.
* Consistently added command variants with all modifiers.
In principle including modifiers in the topics is unnecessary -
you can always strip the modifiers and look up the raw command.
However, looking up a command with modifiers can speed up the process
(compare looking up ?S<TAB> vs ?::S<TAB>
* The `@` modifier is listed only for commands without string arguments.
|
|
* These were leaked e.g. in case of end-of-macro errors,
but also in case of syntax highlighting (teco_lexer_style()).
I considered to solve this by overwriting more of the end_of_macro_cb,
but it didn't turn out to be trivial always.
* Considering that the union in teco_machine_main_t saved only 3 machine words
of memory, I decided to sacrifice those for more robust memory management.
* teco_machine_qregspec_t cannot be directly embedded into teco_machine_main_t
due to recursive dependencies with teco_machine_stringbuilding_t.
It could now and should perhaps be allocated only once in teco_machine_main_init(),
but it would require more refactoring.
|
|
* It turns out that `bool` (_Bool) in bitfields may cause
padding to the next 32-bit word.
This was only observed on MinGW.
I am not entirely sure why, although the C standard does
not guarantee much with regard to bitfield memory layout
and there are 64-bit available due to passing anyway.
Actually, they could also be layed out in a different order.
* I am now consistently using guint instead of `bool` in bitfields
to prevent any potential surprises.
* The way that guint was aliased with bitfield structs
for undoing teco_machine_main_t and teco_machine_qregspec_t flags
was therefore insecure.
It was not guaranteed that the __flags field really "captures"
all of the bit field.
Even with `guint v : 1` fields, this was not guaranteed.
We would have required a static assertion for robustness.
Alternatively, we could have declared a `gsize __flags` variable
as well. This __should__ be safe since gsize should always be
pointer sized and correspond to the platform's alignment.
However, it's also not 100% guaranteed.
Using classic ANSI C enums with bit operations to encode multiple
fields and flags into a single integer also doesn't look very
attractive.
* Instead, we now define scalar types with their own teco_undo_push()
shortcuts for the bitfield structs.
This is in one way simpler and much more robust, but on the other
hand complicates access to the flag variables.
* It's a good question whether a `struct __attribute__((packed))` bitfield
with guint fields would be a reliable replacement for flag enums, that
are communicated with the "outside" (TECO) world.
I am not going to risk it until GCC gives any guarantees, though.
For the time being, bitfields are only used internally where
the concrete memory layout (bit positions) is not crucial.
* This fixes the test suite and therefore probably CI and nightly
builds on Windows.
* Test case: Rub out `@I//` or `@Xq` until before the `@`.
The parser doesn't know that `@` is still set and allows
all sorts of commands where `@` should be forbidden.
* It's unknown how long this has been broken on Windows - quite
possibly since v2.0.
|
|
All state definition macros document their "base" states as well
since they form an inheritance hierarchy.
|
|
* Objects, that are restored with TECO_DEFINE_UNDO_OBJECT_OWN(),
could actually leak memory on rubout since the old object was not
deleted when overwriting it.
* Now that it is, it is crucial to at least nullify objects/pointers
after calling the corresponding push-function.
These conditions are now explicitly documented.
* The test suite now runs successfully under Valgrind even with full leak checking.
|
|
redefinition)
This could actually be reproduced by `./testsuite --valgrind` and by the
Address Sanitizer.
|
|
* Curses allows scrolling with the scroll wheel at least
if mouse support is enabled via ED flags.
Gtk always supported that.
* Allow clicking on popup entries to fully autocomplete them.
Since this behavior - just like auto completions - is parser state-dependant,
I introduced a new state method (insert_completion_cb).
All the implementations are currently in cmdline.c since there is some overlap
with the process_edit_cmd_cb implementations.
* Fixed pressing undefined function keys while showing the popup.
The popup area is no longer redrawn/replaced with the Scintilla view.
Instead, continue to show the popup.
|
|
* Allowing label redefinitions might have been useful when used as comments,
since you will want to be able to define arbitrary comments.
However as flow control constructs, this introduced a certain ambiguity since
gotos might jump to different locations, depending on the progression
of the parser.
* On the other hand, making label redefinition an error might disqualify labels as
comments when writing or porting classic TECO code.
Therefore, it has been made a warning as a compromise.
* Added test case
|
|
|
|
* The previous convention of !* ... *! are now true block comments,
i.e. they are parsed faster, don't spam the goto table and allow
embedding of exclamation marks - only "*!" terminates the comment.
* It is therefore now forbidden to have goto labels beginning with "*".
* Also support "!!" to introduce EOL comments (like C++'s //).
This disallows empty labels, but they weren't useful anyway.
This is the shortest way to begin a comment.
* All comment labels have been converted to true comments, to ensure
that syntax highlighting works correctly.
EOL comments are used for single line commented-out code, since it's
easiest to uncomment - you don't have to jump to the line end.
This is a pure convention / coding style.
Other people might do it differently.
* It's of course still possible to abuse goto labels as comments
as TECO did for ages.
* In lexing / syntax highlighting, labels and comments are highlighted differently.
* When syntax highlighting, a single "!" will first be highlighted as a label
since it's not yet unambiguous. Once you type the second character (* or !),
the first character is retroactively styled as a comment as well.
|
|
* this works by embedding the SciTECO parser and driving it always (exclusively)
in parse-only mode.
* A new teco_state_t::style determines the Scintilla style for any character
accepted in the given state.
* Therefore, the SciTECO lexer is always 100% exact and corresponds to the current
SciTECO grammer - it does not have to be maintained separately.
There are a few exceptions and tweaks, though.
* The contents of curly-brace escapes (`@^Uq{...}`) are rendered as ordinary
code using a separate parser instance.
This can be disabled with the lexer.sciteco.macrodef property.
Unfortunately, SciTECO does not currently allow setting lexer properties (FIXME).
* Labels and comments are currently styled the same.
This could change in the future once we introduce real comments.
* Lexers are usually implemented in C++, but I did not want to draw in C++.
Especially not since we'd have to include parser.h and other SciTECO headers,
that really do not want to keep C++-compatible.
Instead, the lexer is implemented "in the container".
@ES/SCI_SETILEXER/sciteco/ is internally translated to SCI_SETILEXER(NULL)
and we get Scintilla notifications when styling the view becomes necessary.
This is then centrally forwarded to the teco_lexer_style() which
uses the ordinary teco_view_ssm() API for styling.
* Once the command line becomes a Scintilla view even on Curses,
we can enabled syntax highlighting of the command line macro.
|
|
* This fixes F< to the beginning of the macro, which was broken in 73d574b71a10d4661ada20275cafde75aff6c1ba.
teco_machine_main_t::macro_pc actually has to be signed as it is sometimes set to -1.
|
|
The following rules apply:
* All SciTECO macros __must__ be in valid UTF-8, regardless of the
the register's configured encoding.
This is checked against before execution, so we can use glib's non-validating
UTF-8 API afterwards.
* Things will inevitably get slower as we have to validate all macros first
and convert to gunichar for each and every character passed into the parser.
As an optimization, it may make sense to have our own inlineable version of
g_utf8_get_char() (TODO).
Also, Unicode glyphs in syntactically significant positions may be case-folded -
just like ASCII chars were. This is is of course slower than case folding
ASCII. The impact of this should be measured and perhaps we should restrict
case folding to a-z via teco_ascii_toupper().
* The language itself does not use any non-ANSI characters, so you don't have to
use UTF-8 characters.
* Wherever the parser expects a single character, it will now accept an arbitrary
Unicode/UTF-8 glyph as well.
In other words, you can call macros like M§ instead of having to write M[§].
You can also get the codepoint of any Unicode character with ^^x.
Pressing an Unicode character in the start state or in Ex and Fx will now
give a sane error message.
* When pressing a key which produces a multi-byte UTF-8 sequence, the character
gets translated back and forth multiple times:
1. It's converted to an UTF-8 string, either buffered or by IME methods (Gtk).
On Curses we could directly get a wide char using wget_wch(), but it's
not currently used, so we don't depend on widechar curses.
2. Parsed into gunichar for passing into the edit command callbacks.
This also validates the codepoint - everything later on can assume valid
codepoints and valid UTF-8 strings.
3. Once the edit command handling decides to insert the key into the command line,
it is serialized back into an UTF-8 string as the command line macro has
to be in UTF-8 (like all other macros).
4. The parser reads back gunichars without validation for passing into
the parser callbacks.
* Flickering in the Curses UI and Pango warnings in Gtk, due to incompletely
inserted and displayed UTF-8 sequences, are now fixed.
|
|
|
|
|
|
|
|
* The C standard actually forbids this (undefined behaviour) even though
it seems intuitive that something like `memcpy(foo, NULL, 0)` does no harm.
* It turned out, there were actual real bugs related to this.
If memchr() was called with a variable that can be NULL,
the compiler could assume that the variable is actually always non-NULL
(since glibc declares memchr() with nonnull), consequently eliminating
checks for NULL afterwards.
The same could theoretically happen with memcpy().
This manifested itself in the empty search crashing when building with -O3.
Test case:
sciteco -e '@S//'
* Consequently, the nightly builds (at least for Ubuntu) also had this bug.
* In some cases, the passed in pointers are passed down from the caller but
should not be NULL, so I added runtime assertions to guard against it.
|
|
This is a total conversion of SciTECO to plain C (GNU C11).
The chance was taken to improve a lot of internal datastructures,
fix fundamental bugs and lay the foundations of future features.
The GTK user interface is now in an useable state!
All changes have been squashed together.
The language itself has almost not changed at all, except for:
* Detection of string terminators (usually Escape) now takes
the string building characters into account.
A string is only terminated outside of string building characters.
In other words, you can now for instance write
I^EQ[Hello$world]$
This removes one of the last bits of shellisms which is out of
place in SciTECO where no tokenization/lexing is performed.
Consequently, the current termination character can also be
escaped using ^Q/^R.
This is used by auto completions to make sure that strings
are inserted verbatim and without unwanted sideeffects.
* All strings can now safely contain null-characters
(see also: 8-bit cleanliness).
The null-character itself (^@) is not (yet) a valid SciTECO
command, though.
An incomplete list of changes:
* We got rid of the BSD headers for RB trees and lists/queues.
The problem with them was that they used a form of metaprogramming
only to gain a bit of type safety. It also resulted in less
readble code. This was a C++ desease.
The new code avoids metaprogramming only to gain type safety.
The BSD tree.h has been replaced by rb3ptr by Jens Stimpfle
(https://github.com/jstimpfle/rb3ptr).
This implementation is also more memory efficient than BSD's.
The BSD list.h and queue.h has been replaced with a custom
src/list.h.
* Fixed crashes, performance issues and compatibility issues with
the Gtk 3 User Interface.
It is now more or less ready for general use.
The GDK lock is no longer used to avoid using deprecated functions.
On the downside, the new implementation (driving the Gtk event loop
stepwise) is even slower than the old one.
A few glitches remain (see TODO), but it is hoped that they will
be resolved by the Scintilla update which will be performed soon.
* A lot of program units have been split up, so they are shorter
and easier to maintain: core-commands.c, qreg-commands.c,
goto-commands.c, file-utils.h.
* Parser states are simply structs of callbacks now.
They still use a kind of polymorphy using a preprocessor trick.
TECO_DEFINE_STATE() takes an initializer list that will be
merged with the default list of field initializers.
To "subclass" states, you can simply define new macros that add
initializers to existing macros.
* Parsers no longer have a "transitions" table but the input_cb()
may use switch-case statements.
There are also teco_machine_main_transition_t now which can
be used to implement simple transitions. Additionally, you
can specify functions to execute during transitions.
This largely avoids long switch-case-statements.
* Parsers are embeddable/reusable now, at least in parse-only mode.
This does not currently bring any advantages but may later
be used to write a Scintilla lexer for TECO syntax highlighting.
Once parsers are fully embeddable, it will also be possible
to run TECO macros in a kind of coroutine which would allow
them to process string arguments in real time.
* undo.[ch] still uses metaprogramming extensively but via
the C preprocessor of course. On the downside, most undo
token generators must be initiated explicitly (theoretically
we could have used embedded functions / trampolines to
instantiate automatically but this has turned out to be
dangereous).
There is a TECO_DEFINE_UNDO_CALL() to generate closures for
arbitrary functions now (ie. to call an arbitrary function
at undo-time). This simplified a lot of code and is much
shorter than manually pushing undo tokens in many cases.
* Instead of the ridiculous C++ Curiously Recurring Template
Pattern to achieve static polymorphy for user interface
implementations, we now simply declare all functions to
implement in interface.h and link in the implementations.
This is possible since we no longer hace to define
interface subclasses (all state is static variables in
the interface's *.c files).
* Headers are now significantly shorter than in C++ since
we can often hide more of our "class" implementations.
* Memory counting is based on dlmalloc for most platforms now.
Unfortunately, there is no malloc implementation that
provides an efficient constant-time memory counter that
is guaranteed to decrease when freeing memory.
But since we use a defined malloc implementation now,
malloc_usable_size() can be used safely for tracking memory use.
malloc() replacement is very tricky on Windows, so we
use a poll thread on Windows. This can also be enabled
on other supported platforms using --disable-malloc-replacement.
All in all, I'm still not pleased with the state of memory
limiting. It is a mess.
* Error handling uses GError now. This has the advantage that
the GError codes can be reused once we support error catching
in the SciTECO language.
* Added a few more test suite cases.
* Haiku is no longer supported as builds are instable and
I did not manage to debug them - quite possibly Haiku bugs
were responsible.
* Glib v2.44 or later are now required.
The GTK UI requires Gtk+ v3.12 or later now.
The GtkFlowBox fallback and sciteco-wrapper workaround are
no longer required.
* We now extensively use the GCC/Clang-specific g_auto
feature (automatic deallocations when leaving the current
code block).
* Updated copyright to 2021.
SciTECO has been in continuous development, even though there
have been no commits since 2018.
* Since these changes are so significant, the target release has
been set to v2.0.
It is planned that beginning with v3.0, the language will be
kept stable.
|