Age | Commit message (Collapse) | Author | Files | Lines |
|
* Practically requires one of the "Nerd Font" fonts,
so it's disabled by default.
Add 0,512ED to the profile to enable them.
* The new ED flag could be used to control Gtk icons as well,
but they are left always-enabled for the time being.
Is there any reason anybody would like to disable icons in Gtk?
* The list of icons has been adapted and extended from exa:
https://github.com/ogham/exa/blob/master/src/output/icons.rs
* The icons are hardcoded as presorted lists,
so we can binary search them.
This could change in the future. If there is any demand,
they could be made configurable via Q-Registers as well.
|
|
This is a total conversion of SciTECO to plain C (GNU C11).
The chance was taken to improve a lot of internal datastructures,
fix fundamental bugs and lay the foundations of future features.
The GTK user interface is now in an useable state!
All changes have been squashed together.
The language itself has almost not changed at all, except for:
* Detection of string terminators (usually Escape) now takes
the string building characters into account.
A string is only terminated outside of string building characters.
In other words, you can now for instance write
I^EQ[Hello$world]$
This removes one of the last bits of shellisms which is out of
place in SciTECO where no tokenization/lexing is performed.
Consequently, the current termination character can also be
escaped using ^Q/^R.
This is used by auto completions to make sure that strings
are inserted verbatim and without unwanted sideeffects.
* All strings can now safely contain null-characters
(see also: 8-bit cleanliness).
The null-character itself (^@) is not (yet) a valid SciTECO
command, though.
An incomplete list of changes:
* We got rid of the BSD headers for RB trees and lists/queues.
The problem with them was that they used a form of metaprogramming
only to gain a bit of type safety. It also resulted in less
readble code. This was a C++ desease.
The new code avoids metaprogramming only to gain type safety.
The BSD tree.h has been replaced by rb3ptr by Jens Stimpfle
(https://github.com/jstimpfle/rb3ptr).
This implementation is also more memory efficient than BSD's.
The BSD list.h and queue.h has been replaced with a custom
src/list.h.
* Fixed crashes, performance issues and compatibility issues with
the Gtk 3 User Interface.
It is now more or less ready for general use.
The GDK lock is no longer used to avoid using deprecated functions.
On the downside, the new implementation (driving the Gtk event loop
stepwise) is even slower than the old one.
A few glitches remain (see TODO), but it is hoped that they will
be resolved by the Scintilla update which will be performed soon.
* A lot of program units have been split up, so they are shorter
and easier to maintain: core-commands.c, qreg-commands.c,
goto-commands.c, file-utils.h.
* Parser states are simply structs of callbacks now.
They still use a kind of polymorphy using a preprocessor trick.
TECO_DEFINE_STATE() takes an initializer list that will be
merged with the default list of field initializers.
To "subclass" states, you can simply define new macros that add
initializers to existing macros.
* Parsers no longer have a "transitions" table but the input_cb()
may use switch-case statements.
There are also teco_machine_main_transition_t now which can
be used to implement simple transitions. Additionally, you
can specify functions to execute during transitions.
This largely avoids long switch-case-statements.
* Parsers are embeddable/reusable now, at least in parse-only mode.
This does not currently bring any advantages but may later
be used to write a Scintilla lexer for TECO syntax highlighting.
Once parsers are fully embeddable, it will also be possible
to run TECO macros in a kind of coroutine which would allow
them to process string arguments in real time.
* undo.[ch] still uses metaprogramming extensively but via
the C preprocessor of course. On the downside, most undo
token generators must be initiated explicitly (theoretically
we could have used embedded functions / trampolines to
instantiate automatically but this has turned out to be
dangereous).
There is a TECO_DEFINE_UNDO_CALL() to generate closures for
arbitrary functions now (ie. to call an arbitrary function
at undo-time). This simplified a lot of code and is much
shorter than manually pushing undo tokens in many cases.
* Instead of the ridiculous C++ Curiously Recurring Template
Pattern to achieve static polymorphy for user interface
implementations, we now simply declare all functions to
implement in interface.h and link in the implementations.
This is possible since we no longer hace to define
interface subclasses (all state is static variables in
the interface's *.c files).
* Headers are now significantly shorter than in C++ since
we can often hide more of our "class" implementations.
* Memory counting is based on dlmalloc for most platforms now.
Unfortunately, there is no malloc implementation that
provides an efficient constant-time memory counter that
is guaranteed to decrease when freeing memory.
But since we use a defined malloc implementation now,
malloc_usable_size() can be used safely for tracking memory use.
malloc() replacement is very tricky on Windows, so we
use a poll thread on Windows. This can also be enabled
on other supported platforms using --disable-malloc-replacement.
All in all, I'm still not pleased with the state of memory
limiting. It is a mess.
* Error handling uses GError now. This has the advantage that
the GError codes can be reused once we support error catching
in the SciTECO language.
* Added a few more test suite cases.
* Haiku is no longer supported as builds are instable and
I did not manage to debug them - quite possibly Haiku bugs
were responsible.
* Glib v2.44 or later are now required.
The GTK UI requires Gtk+ v3.12 or later now.
The GtkFlowBox fallback and sciteco-wrapper workaround are
no longer required.
* We now extensively use the GCC/Clang-specific g_auto
feature (automatic deallocations when leaving the current
code block).
* Updated copyright to 2021.
SciTECO has been in continuous development, even though there
have been no commits since 2018.
* Since these changes are so significant, the target release has
been set to v2.0.
It is planned that beginning with v3.0, the language will be
kept stable.
|
|
Automakefiles could be simplified by updating CXXFLAGS
in configure.ac instead.
|
|
been shown to be unacceptably broken, so the fallback implementation has been improved
* mallinfo() is not only broken on 64-bit systems but slows things
down linearilly to the memory size of the process.
E.g. after 500000<%A>, SciTECO will act sluggish! Shutting down
afterwards can take minutes...
mallinfo() was thus finally discarded as a memory measurement
technique.
* Evaluating /proc/self/statm? has also been evaluated and discarded
because doing this frequently is even slower.
* Instead, the fallback implementation has been drastically improved:
* If possible use C++14 global sized deallocators, allowing memory measurements
across the entire C++ code base with minimal runtime overhead.
Since we only depend on C++11, a lengthy Autoconf check had to be introduced.
* Use malloc_usable_size() with global non-sized deallocators to
measure the approx. memory usage of the entire process (at least
the ones done via C++).
The cheaper C++11 sized deallocators implemented via SciTECO::Object still
have precedence, so this affects Scintilla code only.
* With both improvements the test case
sciteco -e '<@EU[X^E\a]"^E\a"%a>'
is handled sufficiently well now on glibc and performance is much better
now.
* The jemalloc-specific technique has been removed since it no longer
brings any benefits compared to the improved fallback technique.
Even the case of using malloc_usable_size() in strict C++ mode is
up to 3 times faster.
* The new fallback implementation might actually be good enough for
Windows as well if some MSVCRT-specific support is added, like
using _msize() instead of malloc_usable_size().
This must be tested and benchmarked, so we keep the Windows-specific
implementation for the time being.
|
|
batch mode
* by using variadic templates, UndoStack::push() is now responsible
for allocating undo tokens. This is avoided in batch mode.
* The old UndoStack::push(UndoToken *) method has been made private
to avoid confusion around UndoStack's API.
The old UndoStack::push() no longer needs to handle !undo.enabled,
but at least asserts on it.
* C++11 support is now required, so variadic templates can be used.
This could have also been done using manual undo.enabled checks;
or using multiple versions of the template with different numbers
of template arguments.
The latter could be done if we one day have to support a non-C++11
compiler.
However since we're depending on GCC 4.4, variadic template use should
be OK.
Clang supports it since v2.9.
* Sometimes, undo token pushing passed ownership of some memory
to the undo token. The old behaviour was relied on to reclaim the
memory even in batch mode -- the undo token was always deleted.
To avoid leaks or repeated manual undo.enabled checking,
another method UndoStack::push_own() had to be
introduced that makes sure that an undo token is always created.
In batch mode (!undo.enabled), this will however create the object
on the stack which is much cheaper than using `new`.
* Having to know which kind of undo token is to be pushed (taking ownership
or not) is inconvenient. It may be better to add static methods to
the UndoToken classes that can take care of reclaiming memory.
* Benchmarking certain SciTECO scripts have shown 50% (!!!) speed increases
at the highest possible optimization level (-O3 -mtune=native -march=native).
|
|
* this has been prepared a long time ago
* the popup widget does not in any way depend on the InterfaceCurses
class and could be used elsewhere.
* common and generic Curses drawing functions required by both the
Curses UI and the CursesInfoPopup widget have been factored out
into curses-utils.cpp (namespace Curses)
* this improved the UI-logic separation and helped in making
interface-curses.cpp smaller
|
|
* use libtool convenience libraries as much as possible
(for all static libraries except Scintilla)
* improves separation of language and user interface implementations
(e.g. the Gtk widgets are not interesting for the rest of SciTECO)
* the Curses popup widget can now be factored out of interface-curses.cpp
* some common CPPFLAGS are now defined by ./configure via AM_CPPFLAGS,
so they don't have to be repeated in each submodule.
* fixed building the Curses UI: GTK_FLOW_BOX_FALLBACK conditional
must always be defined.
|