Age | Commit message (Collapse) | Author | Files | Lines |
|
teco_interface_init_screen()
User messages printed in interative mode aren't currently fully preserved on stdout/stderr
since they are redirected to /dev/null.
Only messages that are not flushed out will be preserved.
Unless you redirect stdout/stderr of SciTECO of course since in this case no redirection
is necessary.
This is probably tolerable esp. once we support multi-line messages in the UIs.
At least it would be tricky to work around.
|
|
* Messages can be arbitrarily long, e.g. the following could provoke crashes in interactive mode
`1000<@I/X/> HX$`
It's hard to turn into a test case, though, as you could always increase the buffer
size in teco_interface_msg().
* The message length is now only limited by RAM.
* This implementation is less effective, but code opting for efficience,
including all programmable user messages, should not rely on the printf-API anyway
but use teco_interface_msg_literal().
|
|
* In principle --stdin and --stdout could have been done in pure TECO code using the
<^T> command.
Having built-in command-line arguments however has several advantages:
* Significantly faster than reading byte-wise with ^T.
* Performs EOL normalization unless specifying --8bit of course.
* Significantly shortens command-lines.
`sciteco -qio` and `sciteco -qi` can be real replacements for sed and awk.
* You can even place SciTECO into the middle of a pipeline while editing
interactively:
foo | sciteco -qio --no-profile | bar
Unfortunately, this will not currently work when munging the profile
as command-line parameters are also transmitted via the unnamed buffer.
This should be changed to use special Q-registers (FIXME).
* --quiet can help to improve the test suite (TODO).
Should probably be the default in TE_CHECK().
* --stdin and --stdout allow to simplify many SciTECO scripts, avoiding
temporary files, especially for womenpage generation (TODO).
* For processing potentially infinite streams, you will still have to
read using ^T.
|
|
stdin or the user
* n:^T always prints bytes (cf. :^A)
* ^T without arguments returns a codepoint or byte from stdin.
In interactive mode, this currentply places a cursor in the message line and waits for a keypress.
|
|
* Greatly improved usability as a scripting language.
* The command is in DEC TECO, but in contrast to DEC TECO, we also
support string building constructs in ^A.
* Required some refactoring: As we want it to write everything verbatim
to stdout, the per-interface method is now teco_interface_msg_literal()
and it has to deal with unprintable characters.
When displaying in the UI, we use teco_curses_format_str() and TecoGtkLabel
functions/widgets to deal with possible control codes.
* Numbers printed with `=` have to be written with a trailing linefeed,
which would also be visible as a reverse "LF" in the UI.
Not sure whether this is acceptable - the alternative would be to strip
the strings before displaying them.
* Messages written to stdout are also auto-flushed at the moment.
In the future we might want to put flushing under control of the language.
Perhaps :^A could inhibit the flushing.
|
|
* You need to set 0,64ED to enable mouse processing in Curses.
It is always enabled in Gtk as it should never make the experience worse.
sample.teco_ini enables mouse support, since this should be the new default.
`sciteco --no-profile` won't have it enabled, though.
* On curses, it requires the ncurses mouse protocol version 2, which will
also be supported by PDCurses.
* Similar to the Curses API, a special key macro ^KMOUSE is inserted if any of the supported
mouse events has been detected.
* You can then use -EJ to get the type of mouse event, which can be used
with a computed goto in the command-line editing macro.
Alternatively, this could have been solved with separate ^KMOUSE:PRESSED,
^KMOUSE:RELEASED etc. pseudo-key macros.
* The default ^KMOUSE implementation in fnkeys.tes supports the following:
* Left click: Edit command line to jump to position.
* Ctrl+left click: Jump to beginning of line.
* Right click: Insert position or position range (when dragging).
* Double right click: insert range for word under cursor
* Ctrl+right click: Insert beginning of line
* Scroll wheel: scrolls (faster with shift)
* Ctrl+scroll wheel: zoom (GTK-only)
* Currently, there is no visual feedback when "selecting" ranges
via right-click+drag.
This would be tricky to do and most terminal emulators do not appear
to support continuous mouse updates.
|
|
|
|
* this works by embedding the SciTECO parser and driving it always (exclusively)
in parse-only mode.
* A new teco_state_t::style determines the Scintilla style for any character
accepted in the given state.
* Therefore, the SciTECO lexer is always 100% exact and corresponds to the current
SciTECO grammer - it does not have to be maintained separately.
There are a few exceptions and tweaks, though.
* The contents of curly-brace escapes (`@^Uq{...}`) are rendered as ordinary
code using a separate parser instance.
This can be disabled with the lexer.sciteco.macrodef property.
Unfortunately, SciTECO does not currently allow setting lexer properties (FIXME).
* Labels and comments are currently styled the same.
This could change in the future once we introduce real comments.
* Lexers are usually implemented in C++, but I did not want to draw in C++.
Especially not since we'd have to include parser.h and other SciTECO headers,
that really do not want to keep C++-compatible.
Instead, the lexer is implemented "in the container".
@ES/SCI_SETILEXER/sciteco/ is internally translated to SCI_SETILEXER(NULL)
and we get Scintilla notifications when styling the view becomes necessary.
This is then centrally forwarded to the teco_lexer_style() which
uses the ordinary teco_view_ssm() API for styling.
* Once the command line becomes a Scintilla view even on Curses,
we can enabled syntax highlighting of the command line macro.
|
|
* this required adding several Q-Register vtable methods
* it should still be investigated whether the repeated calling of
SCI_ALLOCATELINECHARACTERINDEX causes any overhead.
|
|
* This works reasonably well unless lines are exceedingly long
(as on a line we always count characters).
The following test case is still slow (on Unicode buffers):
10000<@I/XX/> <%a-1:J;>
While the following is now also fast:
10000<@I/X^J/> <%a-1:J;>
* Commands with relative character offsets (C, R, A, D) have
a special optimization where they always count characters beginning
at dot, as long as the argument is now exceedingly large.
This means they are fast even on exceedingly long lines.
* The remaining commands (search, EC/EG, Xq) now accept glyph indexes.
|
|
|
|
|
|
|
|
* Previous Scintilla version was 3.6.4 and Scinterm was 1.7 (with lots of custom patches).
All of the patches are now either irrelevant or have been merged upstream.
* Since Scintilla 5 requires C++17, this increases the minimum GCC version at least
to 5.0. We may actually require even newer versions.
* I could not upgrade the scintilla-mirror (which was imported from Mercurial),
so the old sciteco-dev branch was renamed to sciteco-dev-pre-v2.0.0,
master was deleted and I reimported the entire Scintilla repo using
git-remote-hg.
This means that scintilla-mirror now contains two entirely separate trees.
But it is still possible to clone old SciTECO repos.
* The strategy/workflow of maintaining hotfix branches on scintilla-mirror has been changed.
Instead of having one sciteco-dev branch that is rebased onto new Scintilla upstream
releases and tagging SciTECO releases in scintilla-mirror (to keep the commits referenced),
we now create a branch for every Scintilla version we are based on (eg. sciteco-rel-5-1-3).
This branch is never rebased or deleted. Therefore, we are guaranteed to be able to
clone arbitrary SciTECO repo commits - not only releases.
Releases no longer have to be tagged in scintilla-mirror.
On the downside, fixup commits may accumulate in these new branches.
They can only be squashed once a new branch for a new Scintilla release is created
(e.g. by cherry-picking followed by rebase).
* Scinterm does no longer have to reside in the Scintilla subdirectory,
so we added it as a regular submodule.
There are no more recursive submodules.
The Scinterm build system has not been improved at all, but we use
a trick based on VPATH to build Scinterm in scintilla/bin/.
* Scinterm is now in Git and we reference the upstream repo for the
time being.
We might mirror it and apply the same branching workflow as with Scintilla
if necessary.
The scinterm-mirror repository still exists but has not been touched.
We will also have to rewrite its master branch as it was a non-reproducible
Mercurial import.
* Scinterm now also comes with patches for Scintilla which we simply applied
on our sciteco-rel-5-1-3 branch.
* Scintilla 5 outsourced its lexers into the Lexilla project.
We added it as yet another submodule.
* All submodules have been moved into contrib/.
* The Scintilla API for setting lexers has consequently changed.
We now have to call SCI_SETILEXER(0, CreateLexer(name)).
As I did not want to introduce a separate command for setting lexers,
<ES> has been extended to allow setting lexers by name with the SCI_SETILEXER
message which effectively replaces SCI_SETLEXERLANGUAGE.
* The lexer macros (SCLEX_...) no longer serve any purpose - they weren't used
in the SciTECO standard library anyway - and have consequently been removed
from symbols-scilexer.c.
The style macros from SciLexer.h (SCE_...) are theoretically still useful - even
though they are not used by our current color schemes - and have therefore been
retained. They can be specified as wParam in <ES>.
* <ES> no longer allows symbolic constants for lParam.
This never made any sense since all supported symbols were always wParam.
* Scinterm supports new native cursor modes.
They are not used for the time being and the previous CARETSTYLE_BLOCK_AFTER
caret style is configured by default.
It makes no sense to enable native cursor modes now since the
command line should have a native cursor but is not yet a Scintilla view.
* The Scintilla upgrade performed much worse than before,
so some optimizations will be necessary.
|
|
This is a total conversion of SciTECO to plain C (GNU C11).
The chance was taken to improve a lot of internal datastructures,
fix fundamental bugs and lay the foundations of future features.
The GTK user interface is now in an useable state!
All changes have been squashed together.
The language itself has almost not changed at all, except for:
* Detection of string terminators (usually Escape) now takes
the string building characters into account.
A string is only terminated outside of string building characters.
In other words, you can now for instance write
I^EQ[Hello$world]$
This removes one of the last bits of shellisms which is out of
place in SciTECO where no tokenization/lexing is performed.
Consequently, the current termination character can also be
escaped using ^Q/^R.
This is used by auto completions to make sure that strings
are inserted verbatim and without unwanted sideeffects.
* All strings can now safely contain null-characters
(see also: 8-bit cleanliness).
The null-character itself (^@) is not (yet) a valid SciTECO
command, though.
An incomplete list of changes:
* We got rid of the BSD headers for RB trees and lists/queues.
The problem with them was that they used a form of metaprogramming
only to gain a bit of type safety. It also resulted in less
readble code. This was a C++ desease.
The new code avoids metaprogramming only to gain type safety.
The BSD tree.h has been replaced by rb3ptr by Jens Stimpfle
(https://github.com/jstimpfle/rb3ptr).
This implementation is also more memory efficient than BSD's.
The BSD list.h and queue.h has been replaced with a custom
src/list.h.
* Fixed crashes, performance issues and compatibility issues with
the Gtk 3 User Interface.
It is now more or less ready for general use.
The GDK lock is no longer used to avoid using deprecated functions.
On the downside, the new implementation (driving the Gtk event loop
stepwise) is even slower than the old one.
A few glitches remain (see TODO), but it is hoped that they will
be resolved by the Scintilla update which will be performed soon.
* A lot of program units have been split up, so they are shorter
and easier to maintain: core-commands.c, qreg-commands.c,
goto-commands.c, file-utils.h.
* Parser states are simply structs of callbacks now.
They still use a kind of polymorphy using a preprocessor trick.
TECO_DEFINE_STATE() takes an initializer list that will be
merged with the default list of field initializers.
To "subclass" states, you can simply define new macros that add
initializers to existing macros.
* Parsers no longer have a "transitions" table but the input_cb()
may use switch-case statements.
There are also teco_machine_main_transition_t now which can
be used to implement simple transitions. Additionally, you
can specify functions to execute during transitions.
This largely avoids long switch-case-statements.
* Parsers are embeddable/reusable now, at least in parse-only mode.
This does not currently bring any advantages but may later
be used to write a Scintilla lexer for TECO syntax highlighting.
Once parsers are fully embeddable, it will also be possible
to run TECO macros in a kind of coroutine which would allow
them to process string arguments in real time.
* undo.[ch] still uses metaprogramming extensively but via
the C preprocessor of course. On the downside, most undo
token generators must be initiated explicitly (theoretically
we could have used embedded functions / trampolines to
instantiate automatically but this has turned out to be
dangereous).
There is a TECO_DEFINE_UNDO_CALL() to generate closures for
arbitrary functions now (ie. to call an arbitrary function
at undo-time). This simplified a lot of code and is much
shorter than manually pushing undo tokens in many cases.
* Instead of the ridiculous C++ Curiously Recurring Template
Pattern to achieve static polymorphy for user interface
implementations, we now simply declare all functions to
implement in interface.h and link in the implementations.
This is possible since we no longer hace to define
interface subclasses (all state is static variables in
the interface's *.c files).
* Headers are now significantly shorter than in C++ since
we can often hide more of our "class" implementations.
* Memory counting is based on dlmalloc for most platforms now.
Unfortunately, there is no malloc implementation that
provides an efficient constant-time memory counter that
is guaranteed to decrease when freeing memory.
But since we use a defined malloc implementation now,
malloc_usable_size() can be used safely for tracking memory use.
malloc() replacement is very tricky on Windows, so we
use a poll thread on Windows. This can also be enabled
on other supported platforms using --disable-malloc-replacement.
All in all, I'm still not pleased with the state of memory
limiting. It is a mess.
* Error handling uses GError now. This has the advantage that
the GError codes can be reused once we support error catching
in the SciTECO language.
* Added a few more test suite cases.
* Haiku is no longer supported as builds are instable and
I did not manage to debug them - quite possibly Haiku bugs
were responsible.
* Glib v2.44 or later are now required.
The GTK UI requires Gtk+ v3.12 or later now.
The GtkFlowBox fallback and sciteco-wrapper workaround are
no longer required.
* We now extensively use the GCC/Clang-specific g_auto
feature (automatic deallocations when leaving the current
code block).
* Updated copyright to 2021.
SciTECO has been in continuous development, even though there
have been no commits since 2018.
* Since these changes are so significant, the target release has
been set to v2.0.
It is planned that beginning with v3.0, the language will be
kept stable.
|