Age | Commit message (Collapse) | Author | Files | Lines |
|
(refs #5)
|
|
or codepoints) (refs #5)
* This is trickier than it sounds because there isn't one single place to consult.
It depends on the context.
If the string argument relates to buffer contents - as in <I>, <S>, <FR> etc. -
the buffer's encoding is consulted.
If it goes into a register (EU), the register's encoding is consulted.
Everything else (O, EN, EC, ES...) expects only Unicode codepoints.
* This is communicated through a new field teco_machine_stringbuilding_t::codepage
which must be set in the states' initial callback.
* Seems overkill just for ^EUq, but it can be used for context-sensitive
processing of all the other string building constructs as well.
* ^V and ^W cannot be supported for Unicode characters for the time being without an Unicode-aware parser
|
|
teco_state_start_get() (refs #5)
|
|
There is a widespread myth that they could take up to 6 bytes.
|
|
* this required adding several Q-Register vtable methods
* it should still be investigated whether the repeated calling of
SCI_ALLOCATELINECHARACTERINDEX causes any overhead.
|
|
unsigned integer
* SCI_GETCHARAT is internally casted to `char`, which may be signed.
Characters > 127 therefore become negative and stay so when casted to sptr_t.
We therefore cast it back to guchar (unsigned char).
* The same is true whenever returning a string's character to SciTECO (teco_int_t)
as our string type is `gchar *`.
* <^^x> now also works for those characters.
Eventually, the parser will probably become UTF8-aware and this will
have to be done differently.
|
|
* gboolean cannot be used since it is a signed type
* bool is still more readable, even though we mostly use glib typedefs.
* AFAIK the glib types are deprecated, so sooner or later we will switch
to stdint/stdbool types anyway.
|
|
|
|
(-Wsingle-bit-bitfield-constant-conversion)
* gboolean is defined as gint which is a signed type.
A gboolean 1-bit-wide bitfield cannot have the values 0 and 1 but only 0 and -1.
* This wasn't practically a bug unless you would try to compare one of those bitfields
with TRUE.
* All of those bitfields are now guint, even though this is less self-documenting.
|
|
* This was setting only the teco_doc but wasn't calling the necessary
set_string() methods.
* The idiom [$ FG...$ ]$ to change the working directory temporarily
now works.
* Similarily you can now write [~ ^U~...$ ]~ to change the clipboard
temporarily.
* Added test suite cases. The clipboard is not tested since
it's not supported everywhere and would interfer with the host system.
* Resolved lots of redundancies in qreg.c.
The clipboard and workingdir Q-Regs have lots in common.
This is now abstracted in the "external" Q-Reg base "class"
(ie. via initializer TECO_INIT_QREG_EXTERNAL()).
It uses vtable calls which is slightly more inefficient than per
register implementations, but avoiding redundancies is probably more
important.
|
|
|
|
registers
* An empty but valid teco_string_t can contain NULL pointers.
More precisely, a state's done_cb() can be invoked with such empty strings
in case of empty string arguments.
Also a registers get_string() can return the NULL pointer
for existing registers with uninitialized string parts.
* In all of these cases, the language should treat "uninitialized" strings
exactly like empty strings.
* Not doing so, resulted in a number of vulnerabilities.
* EN$$ crashed if "_" was uninitialized
* The ^E@q and ^ENq string building constructs would crash for existing but
uninitialized registers q.
* ?$ would crash
* ESSETILEXER$$ would crash
* This is now fixed.
Test cases have been added.
* I cannot guarantee that I have found all such cases.
Generally, it might be wise to change our definitions and make sure that
every teco_string_t must have an associated heap object to be valid.
All functions returning pointer+length pairs should consequently also never
return NULL pointers.
|
|
begin with an equals character
* Has been observed on Windows Server 2008 with Glib 2.74.1-1, but not on the
Github CI runner.
|
|
g_listenv()
* This is assumed to fix current Windows CI build problems caused by g_getenv() returning NULL
for keys contained in g_listenv(), which is probably a new Glib bug.
* Using g_get_environ() is more efficient since we do not have to repeatedly search
through the environment array with g_getenv().
* Windows 2000 - which supposedly relied on the old code because of its own bugs - is
no longer supported by our minimum Glib version anyway.
|
|
|
|
* Test case: sciteco -e '[a'
[aEX$$ in interactive mode would also crash.
* No longer use a destructor - it was executed after the Q-Reg view was
destroyed.
* Instead, we now explicitly call teco_qreg_stack_clear() in main().
* Added a regression test case.
|
|
This is a total conversion of SciTECO to plain C (GNU C11).
The chance was taken to improve a lot of internal datastructures,
fix fundamental bugs and lay the foundations of future features.
The GTK user interface is now in an useable state!
All changes have been squashed together.
The language itself has almost not changed at all, except for:
* Detection of string terminators (usually Escape) now takes
the string building characters into account.
A string is only terminated outside of string building characters.
In other words, you can now for instance write
I^EQ[Hello$world]$
This removes one of the last bits of shellisms which is out of
place in SciTECO where no tokenization/lexing is performed.
Consequently, the current termination character can also be
escaped using ^Q/^R.
This is used by auto completions to make sure that strings
are inserted verbatim and without unwanted sideeffects.
* All strings can now safely contain null-characters
(see also: 8-bit cleanliness).
The null-character itself (^@) is not (yet) a valid SciTECO
command, though.
An incomplete list of changes:
* We got rid of the BSD headers for RB trees and lists/queues.
The problem with them was that they used a form of metaprogramming
only to gain a bit of type safety. It also resulted in less
readble code. This was a C++ desease.
The new code avoids metaprogramming only to gain type safety.
The BSD tree.h has been replaced by rb3ptr by Jens Stimpfle
(https://github.com/jstimpfle/rb3ptr).
This implementation is also more memory efficient than BSD's.
The BSD list.h and queue.h has been replaced with a custom
src/list.h.
* Fixed crashes, performance issues and compatibility issues with
the Gtk 3 User Interface.
It is now more or less ready for general use.
The GDK lock is no longer used to avoid using deprecated functions.
On the downside, the new implementation (driving the Gtk event loop
stepwise) is even slower than the old one.
A few glitches remain (see TODO), but it is hoped that they will
be resolved by the Scintilla update which will be performed soon.
* A lot of program units have been split up, so they are shorter
and easier to maintain: core-commands.c, qreg-commands.c,
goto-commands.c, file-utils.h.
* Parser states are simply structs of callbacks now.
They still use a kind of polymorphy using a preprocessor trick.
TECO_DEFINE_STATE() takes an initializer list that will be
merged with the default list of field initializers.
To "subclass" states, you can simply define new macros that add
initializers to existing macros.
* Parsers no longer have a "transitions" table but the input_cb()
may use switch-case statements.
There are also teco_machine_main_transition_t now which can
be used to implement simple transitions. Additionally, you
can specify functions to execute during transitions.
This largely avoids long switch-case-statements.
* Parsers are embeddable/reusable now, at least in parse-only mode.
This does not currently bring any advantages but may later
be used to write a Scintilla lexer for TECO syntax highlighting.
Once parsers are fully embeddable, it will also be possible
to run TECO macros in a kind of coroutine which would allow
them to process string arguments in real time.
* undo.[ch] still uses metaprogramming extensively but via
the C preprocessor of course. On the downside, most undo
token generators must be initiated explicitly (theoretically
we could have used embedded functions / trampolines to
instantiate automatically but this has turned out to be
dangereous).
There is a TECO_DEFINE_UNDO_CALL() to generate closures for
arbitrary functions now (ie. to call an arbitrary function
at undo-time). This simplified a lot of code and is much
shorter than manually pushing undo tokens in many cases.
* Instead of the ridiculous C++ Curiously Recurring Template
Pattern to achieve static polymorphy for user interface
implementations, we now simply declare all functions to
implement in interface.h and link in the implementations.
This is possible since we no longer hace to define
interface subclasses (all state is static variables in
the interface's *.c files).
* Headers are now significantly shorter than in C++ since
we can often hide more of our "class" implementations.
* Memory counting is based on dlmalloc for most platforms now.
Unfortunately, there is no malloc implementation that
provides an efficient constant-time memory counter that
is guaranteed to decrease when freeing memory.
But since we use a defined malloc implementation now,
malloc_usable_size() can be used safely for tracking memory use.
malloc() replacement is very tricky on Windows, so we
use a poll thread on Windows. This can also be enabled
on other supported platforms using --disable-malloc-replacement.
All in all, I'm still not pleased with the state of memory
limiting. It is a mess.
* Error handling uses GError now. This has the advantage that
the GError codes can be reused once we support error catching
in the SciTECO language.
* Added a few more test suite cases.
* Haiku is no longer supported as builds are instable and
I did not manage to debug them - quite possibly Haiku bugs
were responsible.
* Glib v2.44 or later are now required.
The GTK UI requires Gtk+ v3.12 or later now.
The GtkFlowBox fallback and sciteco-wrapper workaround are
no longer required.
* We now extensively use the GCC/Clang-specific g_auto
feature (automatic deallocations when leaving the current
code block).
* Updated copyright to 2021.
SciTECO has been in continuous development, even though there
have been no commits since 2018.
* Since these changes are so significant, the target release has
been set to v2.0.
It is planned that beginning with v3.0, the language will be
kept stable.
|