1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// Scintilla source code edit control
/** @file Partitioning.h
** Data structure used to partition an interval. Used for holding line start/end positions.
**/
// Copyright 1998-2007 by Neil Hodgson <neilh@scintilla.org>
// The License.txt file describes the conditions under which this software may be distributed.
#ifndef PARTITIONING_H
#define PARTITIONING_H
namespace Scintilla {
/// A split vector of integers with a method for adding a value to all elements
/// in a range.
/// Used by the Partitioning class.
template <typename T>
class SplitVectorWithRangeAdd : public SplitVector<T> {
public:
explicit SplitVectorWithRangeAdd(ptrdiff_t growSize_) {
this->SetGrowSize(growSize_);
this->ReAllocate(growSize_);
}
// Deleted so SplitVectorWithRangeAdd objects can not be copied.
SplitVectorWithRangeAdd(const SplitVectorWithRangeAdd &) = delete;
SplitVectorWithRangeAdd(SplitVectorWithRangeAdd &&) = delete;
void operator=(const SplitVectorWithRangeAdd &) = delete;
void operator=(SplitVectorWithRangeAdd &&) = delete;
~SplitVectorWithRangeAdd() {
}
void RangeAddDelta(ptrdiff_t start, ptrdiff_t end, T delta) noexcept {
// end is 1 past end, so end-start is number of elements to change
ptrdiff_t i = 0;
const ptrdiff_t rangeLength = end - start;
ptrdiff_t range1Length = rangeLength;
const ptrdiff_t part1Left = this->part1Length - start;
if (range1Length > part1Left)
range1Length = part1Left;
while (i < range1Length) {
this->body[start++] += delta;
i++;
}
start += this->gapLength;
while (i < rangeLength) {
this->body[start++] += delta;
i++;
}
}
};
/// Divide an interval into multiple partitions.
/// Useful for breaking a document down into sections such as lines.
/// A 0 length interval has a single 0 length partition, numbered 0
/// If interval not 0 length then each partition non-zero length
/// When needed, positions after the interval are considered part of the last partition
/// but the end of the last partition can be found with PositionFromPartition(last+1).
template <typename T>
class Partitioning {
private:
// To avoid calculating all the partition positions whenever any text is inserted
// there may be a step somewhere in the list.
T stepPartition;
T stepLength;
std::unique_ptr<SplitVectorWithRangeAdd<T>> body;
// Move step forward
void ApplyStep(T partitionUpTo) noexcept {
if (stepLength != 0) {
body->RangeAddDelta(stepPartition+1, partitionUpTo + 1, stepLength);
}
stepPartition = partitionUpTo;
if (stepPartition >= body->Length()-1) {
stepPartition = Partitions();
stepLength = 0;
}
}
// Move step backward
void BackStep(T partitionDownTo) noexcept {
if (stepLength != 0) {
body->RangeAddDelta(partitionDownTo+1, stepPartition+1, -stepLength);
}
stepPartition = partitionDownTo;
}
void Allocate(ptrdiff_t growSize) {
body = std::make_unique<SplitVectorWithRangeAdd<T>>(growSize);
stepPartition = 0;
stepLength = 0;
body->Insert(0, 0); // This value stays 0 for ever
body->Insert(1, 0); // This is the end of the first partition and will be the start of the second
}
public:
explicit Partitioning(int growSize) : stepPartition(0), stepLength(0) {
Allocate(growSize);
}
// Deleted so Partitioning objects can not be copied.
Partitioning(const Partitioning &) = delete;
Partitioning(Partitioning &&) = delete;
void operator=(const Partitioning &) = delete;
void operator=(Partitioning &&) = delete;
~Partitioning() {
}
T Partitions() const noexcept {
return static_cast<T>(body->Length())-1;
}
T Length() const noexcept {
return PositionFromPartition(Partitions());
}
void InsertPartition(T partition, T pos) {
if (stepPartition < partition) {
ApplyStep(partition);
}
body->Insert(partition, pos);
stepPartition++;
}
void InsertPartitions(T partition, const T *positions, size_t length) {
if (stepPartition < partition) {
ApplyStep(partition);
}
body->InsertFromArray(partition, positions, 0, length);
stepPartition += static_cast<T>(length);
}
void InsertPartitionsWithCast(T partition, const ptrdiff_t *positions, size_t length) {
// Used for 64-bit builds when T is 32-bits
if (stepPartition < partition) {
ApplyStep(partition);
}
T *pInsertion = body->InsertEmpty(partition, length);
for (size_t i = 0; i < length; i++) {
pInsertion[i] = static_cast<T>(positions[i]);
}
stepPartition += static_cast<T>(length);
}
void SetPartitionStartPosition(T partition, T pos) noexcept {
ApplyStep(partition+1);
if ((partition < 0) || (partition > body->Length())) {
return;
}
body->SetValueAt(partition, pos);
}
void InsertText(T partitionInsert, T delta) noexcept {
// Point all the partitions after the insertion point further along in the buffer
if (stepLength != 0) {
if (partitionInsert >= stepPartition) {
// Fill in up to the new insertion point
ApplyStep(partitionInsert);
stepLength += delta;
} else if (partitionInsert >= (stepPartition - body->Length() / 10)) {
// Close to step but before so move step back
BackStep(partitionInsert);
stepLength += delta;
} else {
ApplyStep(Partitions());
stepPartition = partitionInsert;
stepLength = delta;
}
} else {
stepPartition = partitionInsert;
stepLength = delta;
}
}
void RemovePartition(T partition) {
if (partition > stepPartition) {
ApplyStep(partition);
stepPartition--;
} else {
stepPartition--;
}
body->Delete(partition);
}
T PositionFromPartition(T partition) const noexcept {
PLATFORM_ASSERT(partition >= 0);
PLATFORM_ASSERT(partition < body->Length());
const ptrdiff_t lengthBody = body->Length();
if ((partition < 0) || (partition >= lengthBody)) {
return 0;
}
T pos = body->ValueAt(partition);
if (partition > stepPartition)
pos += stepLength;
return pos;
}
/// Return value in range [0 .. Partitions() - 1] even for arguments outside interval
T PartitionFromPosition(T pos) const noexcept {
if (body->Length() <= 1)
return 0;
if (pos >= (PositionFromPartition(Partitions())))
return Partitions() - 1;
T lower = 0;
T upper = Partitions();
do {
const T middle = (upper + lower + 1) / 2; // Round high
T posMiddle = body->ValueAt(middle);
if (middle > stepPartition)
posMiddle += stepLength;
if (pos < posMiddle) {
upper = middle - 1;
} else {
lower = middle;
}
} while (lower < upper);
return lower;
}
void DeleteAll() {
Allocate(body->GetGrowSize());
}
void Check() const {
#ifdef CHECK_CORRECTNESS
if (Length() < 0) {
throw std::runtime_error("Partitioning: Length can not be negative.");
}
if (Partitions() < 1) {
throw std::runtime_error("Partitioning: Must always have 1 or more partitions.");
}
if (Length() == 0) {
if ((PositionFromPartition(0) != 0) || (PositionFromPartition(1) != 0)) {
throw std::runtime_error("Partitioning: Invalid empty partitioning.");
}
} else {
// Positions should be a strictly ascending sequence
for (T i = 0; i < Partitions(); i++) {
const T pos = PositionFromPartition(i);
const T posNext = PositionFromPartition(i+1);
if (pos > posNext) {
throw std::runtime_error("Partitioning: Negative partition.");
} else if (pos == posNext) {
throw std::runtime_error("Partitioning: Empty partition.");
}
}
}
#endif
}
};
}
#endif
|